Cargando…

Disrupting the α7nAChR–NR2A protein complex exerts antidepressant-like effects

Major depressive disorder (MDD) is associated with significant morbidity and mortality. Most antidepressant medications target the serotonin and norepinephrine transporters, but a significant minority of patients do not respond to treatment and novel therapeutic targets are needed. We previously ide...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Anlong, Su, Ping, Li, Shupeng, Wong, Albert H. C., Liu, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256601/
https://www.ncbi.nlm.nih.gov/pubmed/34225758
http://dx.doi.org/10.1186/s13041-021-00817-3
Descripción
Sumario:Major depressive disorder (MDD) is associated with significant morbidity and mortality. Most antidepressant medications target the serotonin and norepinephrine transporters, but a significant minority of patients do not respond to treatment and novel therapeutic targets are needed. We previously identified a protein complex composed of the α7 nicotinic acetylcholine receptor (nAChR) and NMDA glutamate receptors (NMDARs), through which α7nAChR upregulates NMDAR function. Disruption of the α7nAChR–NMDAR complex with an interfering peptide blocked α7nAChR-mediated upregulation of NMDAR function and cue-induced reinstatement of nicotine seeking in rat models of relapse. Here we report that disrupting the α7nAChR–NMDAR complex with the interfering peptide also has antidepressant-like effects in the forced swim test (FST), a common rat behaviour screening test for antidepressant effects. Furthermore, the interfering peptide significantly increases extracellular signal-regulated kinase (ERK) activity in the animals subjected to the FST. Our results provide a novel potential therapeutic target for the development of new antidepressant medications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13041-021-00817-3.