Cargando…
Recombinant SARS-CoV-2 envelope protein traffics to the trans-Golgi network following amphipol-mediated delivery into human cells
The severe acute respiratory syndrome coronavirus 2 envelope protein (S2-E) is a conserved membrane protein that is important for coronavirus (CoV) assembly and budding. Here, we describe the recombinant expression and purification of S2-E in amphipol-class amphipathic polymer solutions, which solub...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256659/ https://www.ncbi.nlm.nih.gov/pubmed/34237302 http://dx.doi.org/10.1016/j.jbc.2021.100940 |
Sumario: | The severe acute respiratory syndrome coronavirus 2 envelope protein (S2-E) is a conserved membrane protein that is important for coronavirus (CoV) assembly and budding. Here, we describe the recombinant expression and purification of S2-E in amphipol-class amphipathic polymer solutions, which solubilize and stabilize membrane proteins, but do not disrupt membranes. We found that amphipol delivery of S2-E to preformed planar bilayers results in spontaneous membrane integration and formation of viroporin cation channels. Amphipol delivery of the S2-E protein to human cells results in plasma membrane integration, followed by retrograde trafficking to the trans-Golgi network and accumulation in swollen perinuclear lysosomal-associated membrane protein 1–positive vesicles, likely lysosomes. CoV envelope proteins have previously been proposed to manipulate the luminal pH of the trans-Golgi network, which serves as an accumulation station for progeny CoV particles prior to cellular egress via lysosomes. Delivery of S2-E to cells will enable chemical biological approaches for future studies of severe acute respiratory syndrome coronavirus 2 pathogenesis and possibly even development of “Trojan horse” antiviral therapies. Finally, this work also establishes a paradigm for amphipol-mediated delivery of membrane proteins to cells. |
---|