Cargando…
Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps
Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256706/ https://www.ncbi.nlm.nih.gov/pubmed/34258011 http://dx.doi.org/10.1107/S2052252521004619 |
_version_ | 1783718151233470464 |
---|---|
author | Kelpšas, Vinardas Caldararu, Octav Blakeley, Matthew P. Coquelle, Nicolas Wierenga, Rikkert K. Ryde, Ulf von Wachenfeldt, Claes Oksanen, Esko |
author_facet | Kelpšas, Vinardas Caldararu, Octav Blakeley, Matthew P. Coquelle, Nicolas Wierenga, Rikkert K. Ryde, Ulf von Wachenfeldt, Claes Oksanen, Esko |
author_sort | Kelpšas, Vinardas |
collection | PubMed |
description | Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of Leishmania mexicana TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations. |
format | Online Article Text |
id | pubmed-8256706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-82567062021-07-12 Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps Kelpšas, Vinardas Caldararu, Octav Blakeley, Matthew P. Coquelle, Nicolas Wierenga, Rikkert K. Ryde, Ulf von Wachenfeldt, Claes Oksanen, Esko IUCrJ Research Papers Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of Leishmania mexicana TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations. International Union of Crystallography 2021-06-03 /pmc/articles/PMC8256706/ /pubmed/34258011 http://dx.doi.org/10.1107/S2052252521004619 Text en © Vinardas Kelpšas et al. 2021 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Kelpšas, Vinardas Caldararu, Octav Blakeley, Matthew P. Coquelle, Nicolas Wierenga, Rikkert K. Ryde, Ulf von Wachenfeldt, Claes Oksanen, Esko Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title_full | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title_fullStr | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title_full_unstemmed | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title_short | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
title_sort | neutron structures of leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256706/ https://www.ncbi.nlm.nih.gov/pubmed/34258011 http://dx.doi.org/10.1107/S2052252521004619 |
work_keys_str_mv | AT kelpsasvinardas neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT caldararuoctav neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT blakeleymatthewp neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT coquellenicolas neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT wierengarikkertk neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT rydeulf neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT vonwachenfeldtclaes neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps AT oksanenesko neutronstructuresofleishmaniamexicanatriosephosphateisomeraseincomplexwithreactionintermediatemimicsshedlightontheprotonshuttlingsteps |