Cargando…

Discerning best practices in XFEL-based biological crystallography – standards for nonstandard experiments

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of...

Descripción completa

Detalles Bibliográficos
Autores principales: Gorel, Alexander, Schlichting, Ilme, Barends, Thomas R. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256713/
https://www.ncbi.nlm.nih.gov/pubmed/34258002
http://dx.doi.org/10.1107/S205225252100467X
Descripción
Sumario:Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of still diffraction images of generally randomly oriented microcrystals. For this reason, and possibly due to limitations of the still evolving data-analysis programs, XFEL-derived SFX data are typically of a lower quality than ‘standard’ crystallographic data. In contrast with this, the studies performed at XFELs often aim to investigate issues that require precise high-resolution data, for example to determine structures of intermediates at low occupancy, which often display very small conformational changes. This is a potentially dangerous combination and underscores the need for a critical evaluation of procedures including data-quality standards in XFEL-based structural biology. Here, such concerns are addressed.