Cargando…
RENET2: high-performance full-text gene–disease relation extraction with iterative training data expansion
Relation extraction (RE) is a fundamental task for extracting gene–disease associations from biomedical text. Many state-of-the-art tools have limited capacity, as they can extract gene–disease associations only from single sentences or abstract texts. A few studies have explored extracting gene–dis...
Autores principales: | Su, Junhao, Wu, Ye, Ting, Hing-Fung, Lam, Tak-Wah, Luo, Ruibang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256824/ https://www.ncbi.nlm.nih.gov/pubmed/34235433 http://dx.doi.org/10.1093/nargab/lqab062 |
Ejemplares similares
-
OnTheFly(2.0): a text-mining web application for automated biomedical entity recognition, document annotation, network and functional enrichment analysis
por: Baltoumas, Fotis A, et al.
Publicado: (2021) -
GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins
por: Brůna, Tomáš, et al.
Publicado: (2020) -
A random forest-based framework for genotyping and accuracy assessment of copy number variations
por: Zhuang, Xuehan, et al.
Publicado: (2020) -
scAIDE: clustering of large-scale single-cell RNA-seq data reveals putative and rare cell types
por: Xie, Kaikun, et al.
Publicado: (2020) -
Improved computational analysis of ribosome dynamics from 5′P degradome data using fivepseq
por: Nersisyan, Lilit, et al.
Publicado: (2020)