Cargando…

Adult Hippocampal Neurogenesis and Alzheimer's Disease: Novel Application of Mesenchymal Stem Cells and their Role in Hippocampal Neurogenesis

The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intri...

Descripción completa

Detalles Bibliográficos
Autores principales: Noureddini, Mahdi, Bagheri-Mohammadi, Saeid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Babol University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256831/
https://www.ncbi.nlm.nih.gov/pubmed/34268249
http://dx.doi.org/10.22088/IJMCM.BUMS.10.1.1
Descripción
Sumario:The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer's disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.