Cargando…
Cross-sectional analysis and data-driven forecasting of confirmed COVID-19 cases
The coronavirus disease 2019 (COVID-19) is rapidly becoming one of the leading causes for mortality worldwide. Various models have been built in previous works to study the spread characteristics and trends of the COVID-19 pandemic. Nevertheless, due to the limited information and data source, the u...
Autores principales: | Jing, Nan, Shi, Zijing, Hu, Yi, Yuan, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256957/ https://www.ncbi.nlm.nih.gov/pubmed/34764608 http://dx.doi.org/10.1007/s10489-021-02616-8 |
Ejemplares similares
-
Forecasting COVID-19 Confirmed Cases Using Empirical Data Analysis in Korea
por: Lee, Da Hye, et al.
Publicado: (2021) -
Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2020) -
Forecasting COVID-19 pandemic: A data-driven analysis
por: Nabi, Khondoker Nazmoon
Publicado: (2020) -
Time series modelling to forecast the confirmed and recovered cases of COVID-19
por: Maleki, Mohsen, et al.
Publicado: (2020) -
Forecasting Covid-19 Dynamics in Brazil: A Data Driven Approach
por: Pereira, Igor Gadelha, et al.
Publicado: (2020)