Cargando…
Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm
Significance: The Mueller matrix decomposition method is widely used for the analysis of biological samples. However, its presumed sequential appearance of the basic optical effects (e.g., dichroism, retardance, and depolarization) limits its accuracy and application. Aim: An approach is proposed fo...
Autores principales: | Luu, Ngan Thanh, Le, Thanh-Hai, Phan, Quoc-Hung, Pham, Thi-Thu-Hien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256999/ https://www.ncbi.nlm.nih.gov/pubmed/34227277 http://dx.doi.org/10.1117/1.JBO.26.7.075001 |
Ejemplares similares
-
Combined Mueller matrix imaging and artificial intelligence classification framework for Hepatitis B detection
por: Pham, Thi-Thu-Hien, et al.
Publicado: (2022) -
Polarimetric imaging combining optical parameters for classification of mice non-melanoma skin cancer tissue using machine learning
por: Pham, Thi-Thu-Hien, et al.
Publicado: (2023) -
Dual-Retarder Mueller Polarimetry System for Extraction of Optical Properties of Serum Albumin Protein Media
por: Phan, Quoc-Hung, et al.
Publicado: (2021) -
Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry
por: Lien, Chi-Hsiang, et al.
Publicado: (2022) -
Spatial frequency domain Mueller matrix imaging
por: Chue-Sang, Joseph, et al.
Publicado: (2022)