Cargando…

Network Pharmacology and Bioinformatics Methods Reveal the Mechanism of Zao-Jiao-Ci in the Treatment of LSCC

OBJECTIVE: Zao-Jiao-Ci (ZJC), a traditional Chinese medicine, is considered as a promising candidate to treat laryngeal squamous cell carcinoma (LSCC). However, the underlying molecular mechanism remains unclear. METHODS: Gene expression profiles of GSE36668 were available from the GEO database, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Feng, Li, Linman, Lin, Jieling, Li, Shasha, Peng, Guiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257394/
https://www.ncbi.nlm.nih.gov/pubmed/34257654
http://dx.doi.org/10.1155/2021/8862821
Descripción
Sumario:OBJECTIVE: Zao-Jiao-Ci (ZJC), a traditional Chinese medicine, is considered as a promising candidate to treat laryngeal squamous cell carcinoma (LSCC). However, the underlying molecular mechanism remains unclear. METHODS: Gene expression profiles of GSE36668 were available from the GEO database, and differentially expressed genes (DEGs) of LSCC were obtained by R package; subsequently, enrichment analysis on KEGG and GO of DEGs was performed. The active ingredients of ZJC were screened from the TCMSP database, and the matched candidate targets were obtained by PharmMapper. Furthermore, we constructed protein-protein interaction (PPI) networks of DEGs and candidate targets, respectively, and we screened the core network from the merged network through combining the two PPI networks using Cytoscape 3.7.2. The key targets derived from the core network were analyzed to find out the associated KEGG signal enrichment pathway. By the GEPIA online website, Kaplan–Meier analysis was used to complete the overall survival and disease-free survival of the selected genes in the core module. RESULTS: We identified 96 candidate targets of ZJC and 86 DEGs of LSCC, the latter including 50 upregulated genes and 36 downregulated genes. DEGs were obviously enriched in the following biological functions: extracellular structure organization, the extracellular matrix organization, and endodermal cell differentiation. The 60 key targets from the core network were enriched in the signal pathways including transcriptional misregulation cancer, cell cycle, and so on. We found that LSCC patients with high expression of HIST1H3J, HIST1H3F, and ITGA4 had worse overall survival, while higher expression of NTRK1, COPS5, HIST1H3A, and HIST1H3G had significantly worse disease-free survival. CONCLUSION: It suggested that the interaction between ZJC and LSCC was related to the signal pathways of transcriptional misregulation cancer and cell cycle, revealing that it may be the mechanism of ZJC in the treatment of LSCC.