Cargando…
Spatial-temporal generalized additive model for modeling COVID-19 mortality risk in Toronto, Canada
This article presents a spatial–temporal generalized additive model for modeling geo-referenced COVID-19 mortality data in Toronto, Canada. A range of factors and spatial–temporal terms are incorporated into the model. The non-linear and interactive effects of the neighborhood-level factors, i.e., p...
Autor principal: | Feng, Cindy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257405/ https://www.ncbi.nlm.nih.gov/pubmed/34249608 http://dx.doi.org/10.1016/j.spasta.2021.100526 |
Ejemplares similares
-
Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods
por: Feng, Cindy, et al.
Publicado: (2021) -
Modelling the spatiotemporal spread of COVID-19 outbreaks and prioritization of the risk areas in Toronto, Canada
por: Nazia, Nushrat, et al.
Publicado: (2023) -
Increased Mortality in Patients With Acutely Decompensated Heart Failure During the COVID-19 Pandemic in Toronto, Canada
por: Buchan, Tayler A., et al.
Publicado: (2022) -
Spatiotemporal clusters and the socioeconomic determinants of COVID-19 in Toronto neighbourhoods, Canada
por: Nazia, Nushrat, et al.
Publicado: (2022) -
Ontario Veterinary College, Toronto, Canada
Publicado: (1888)