Cargando…

SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of surv...

Descripción completa

Detalles Bibliográficos
Autores principales: Deguise, Marc-Olivier, Pileggi, Chantal, De Repentigny, Yves, Beauvais, Ariane, Tierney, Alexandra, Chehade, Lucia, Michaud, Jean, Llavero-Hurtado, Maica, Lamont, Douglas, Atrih, Abdelmadjid, Wishart, Thomas M., Gillingwater, Thomas H., Schneider, Bernard L., Harper, Mary-Ellen, Parson, Simon H., Kothary, Rashmi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257458/
https://www.ncbi.nlm.nih.gov/pubmed/33545428
http://dx.doi.org/10.1016/j.jcmgh.2021.01.019
Descripción
Sumario:BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of survival motor neuron (SMN) depletion (Smn(2B/-) mice) was recently shown to develop significant hepatic steatosis in less than 2 weeks from birth. The rapid onset of fatty liver in Smn(2B/-) mice provides an opportunity to identify molecular markers of NAFLD. Here, we investigated whether Smn(2B/-) mice display typical features of NAFLD/nonalcoholic steatohepatitis (NASH). METHODS: Biochemical, histologic, electron microscopy, proteomic, and high-resolution respirometry were used. RESULTS: The Smn(2B/-) mice develop microvesicular steatohepatitis within 2 weeks, a feature prevented by AAV9-SMN gene therapy. Although fibrosis is not overtly apparent in histologic sections of the liver, there is molecular evidence of fibrogenesis and presence of stellate cell activation. The consequent liver damage arises from mitochondrial reactive oxygen species production and results in hepatic dysfunction in protein output, complement, coagulation, iron homeostasis, and insulin-like growth factor-1 metabolism. The NAFLD phenotype is likely due to non-esterified fatty acid overload from peripheral lipolysis subsequent to hyperglucagonemia compounded by reduced muscle use and insulin resistance. Despite the low hepatic mitochondrial content, isolated mitochondria show enhanced β-oxidation, likely as a compensatory response, resulting in the production of reactive oxygen species. In contrast to typical NAFLD/NASH, the Smn(2B/-) mice lose weight because of their associated neurological condition (spinal muscular atrophy) and develop hypoglycemia. CONCLUSIONS: The Smn(2B/-) mice represent a good model of microvesicular steatohepatitis. Like other models, it is not representative of the complete NAFLD/NASH spectrum. Nevertheless, it offers a reliable, low-cost, early-onset model that is not dependent on diet to identify molecular players in NAFLD pathogenesis and can serve as one of the very few models of microvesicular steatohepatitis for both adult and pediatric populations.