Cargando…

Remote Ischemic Postconditioning vs. Physical Exercise After Stroke: an Alternative Rehabilitation Strategy?

There remain debates on neuroprotection and rehabilitation techniques for acute ischemic stroke patients. Therapeutic physical exercise following stroke has shown promise but is challenging to apply clinically. Ischemic conditioning, which has several clinical advantages, is a potential neuroprotect...

Descripción completa

Detalles Bibliográficos
Autores principales: Geng, Xiaokun, Wang, Qingzhu, Lee, Hangil, Huber, Christian, Wills, Melissa, Elkin, Kenneth, Li, Fengwu, Ji, Xunming, Ding, Yuchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257517/
https://www.ncbi.nlm.nih.gov/pubmed/33625674
http://dx.doi.org/10.1007/s12035-021-02329-6
Descripción
Sumario:There remain debates on neuroprotection and rehabilitation techniques for acute ischemic stroke patients. Therapeutic physical exercise following stroke has shown promise but is challenging to apply clinically. Ischemic conditioning, which has several clinical advantages, is a potential neuroprotective method for stroke rehabilitation that is less understood. In the present study, the rehabilitative properties and mechanisms of physical exercise and remote ischemic postconditioning (RIPostC) after stroke were compared and determined. A total of 248 adult male Sprague-Dawley rats were divided into five groups: (1) sham, (2) stroke, (3) stroke with intense treadmill exercise, (4) stroke with mild treadmill exercise, and (5) stroke with RIPostC. Focal ischemia was evaluated by infarct volume and neurological deficit. Long-term functional outcomes were represented through neurobehavioral function tests: adhesive removal, beam balance, forelimb placing, grid walk, rota-rod, and Morris water maze. To further understand the mechanisms underlying neurorehabilitation and verify the presence thereof, we measured mRNA and protein levels of neuroplasticity factors, synaptic proteins, angiogenesis factors, and regulation molecules, including HIF-1α, BDNF, TrkB, and CREB. The key role of HIF-1α was elucidated by using the inhibitor, YC-1. Both exercise intensities and RIPostC significantly decreased infarct volumes and neurological deficits and outperformed the stroke group in the neurobehavioral function tests. All treatment groups showed significant increases in mRNA and protein expression levels of the target molecules for neurogenesis, synaptogenesis, and angiogenesis, with intermittent further increases in the RIPostC group. HIF-1α inhibition nullified most beneficial effects and indicative molecule expressions, including HIF-1α, BDNF, TrkB, and CREB, in both procedures. RIPostC is equally, or superiorly, effective in inducing neuroprotection and rehabilitation compared to exercise in ischemic rats. HIF-1α likely plays an important role in the efficacy of neuroplasticity conditioning, possibly through HIF-1α/BDNF/TrkB/CREB regulation.