Cargando…
Bayesian inversion of a diffusion model with application to biology
A common task in experimental sciences is to fit mathematical models to real-world measurements to improve understanding of natural phenomenon (reverse-engineering or inverse modelling). When complex dynamical systems are considered, such as partial differential equations, this task may become chall...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257546/ https://www.ncbi.nlm.nih.gov/pubmed/34226951 http://dx.doi.org/10.1007/s00285-021-01621-2 |
Sumario: | A common task in experimental sciences is to fit mathematical models to real-world measurements to improve understanding of natural phenomenon (reverse-engineering or inverse modelling). When complex dynamical systems are considered, such as partial differential equations, this task may become challenging or ill-posed. In this work, a linear parabolic equation is considered as a model for protein transcription from MRNA. The objective is to estimate jointly the differential operator coefficients, namely the rates of diffusion and self-regulation, as well as a functional source. The recent Bayesian methodology for infinite dimensional inverse problems is applied, providing a unique posterior distribution on the parameter space continuous in the data. This posterior is then summarized using a Maximum a Posteriori estimator. Finally, the theoretical solution is illustrated using a state-of-the-art MCMC algorithm adapted to this non-Gaussian setting. |
---|