Cargando…

Determination of the dynamic cellular transcriptional profiles during kidney development from birth to maturity in rats by single-cell RNA sequencing

Recent single-cell RNA sequencing (scRNA-seq) analyses have offered much insight into the gene expression profiles in early-stage kidney development. However, comprehensive gene expression profiles from mid- and late-stage kidney development are lacking. In the present study, by using the scRNA-seq...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Fangrui, Tian, Xiuying, Mo, Jiali, Wang, Botao, Zheng, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257621/
https://www.ncbi.nlm.nih.gov/pubmed/34226524
http://dx.doi.org/10.1038/s41420-021-00542-9
Descripción
Sumario:Recent single-cell RNA sequencing (scRNA-seq) analyses have offered much insight into the gene expression profiles in early-stage kidney development. However, comprehensive gene expression profiles from mid- and late-stage kidney development are lacking. In the present study, by using the scRNA-seq technique, we analyzed 54,704 rat kidney cells from just after birth to adulthood (six time points: postnatal days 0, 2, 5, 10, 20, and 56) including the mid and late stages of kidney development. Twenty-five original clusters and 13 different cell types were identified during these stages. Gene expression in these 13 cell types was mapped, and single cell atlas of the rat kidney from birth to maturity (http://youngbearlab.com) was built to enable users to search for a gene of interest and to evaluate its expression in different cells. The variation trend of six major types of kidney cells—intercalated cells of the collecting duct (CD-ICs), principal cells of the collecting duct (CD-PCs), cells of the distal convoluted tubules (DCTs), cells of the loop of Henle (LOH), podocytes (PDs), and cells of the proximal tubules (PTs)—during six postnatal time points was demonstrated. The trajectory of rat kidney development and the order of induction of the six major types of kidney cells from just after birth to maturity were determined. In addition, features of the dynamically changing genes as well as transcription factors during postnatal rat kidney development were identified. The present study provides a resource for achieving a deep understanding of the molecular basis of and regulatory events in the mid and late stages of kidney development.