Cargando…
III–V nanowires on silicon (100) as plasmonic-photonic hybrid meta-absorber
Integration of functional infrared photodetectors on silicon platforms has been gaining attention for diverse applications in the fields of imaging and sensing. Although III–V semiconductor is a promising candidate for infrared photodetectors on silicon, the difficulties in directly growing high-qua...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257772/ https://www.ncbi.nlm.nih.gov/pubmed/34226651 http://dx.doi.org/10.1038/s41598-021-93398-z |
Sumario: | Integration of functional infrared photodetectors on silicon platforms has been gaining attention for diverse applications in the fields of imaging and sensing. Although III–V semiconductor is a promising candidate for infrared photodetectors on silicon, the difficulties in directly growing high-quality III–V on silicon and realizing functionalities have been a challenge. Here, we propose a design of III–V nanowires on silicon (100) substrates, which are self-assembled with gold plasmonic nanostructures, as a key building block for efficient and functional photodetectors on silicon. Partially gold-coated III–V nanowire arrays form a plasmonic-photonic hybrid metasurface, wherein the localized and propagating plasmonic resonances enable high absorption in III–V nanowires. Unlike conventional photodetectors, numerical calculations reveal that the proposed meta-absorber exhibits high sensitivity to the polarization, incident angle, wavelength of input light, as well as the surrounding environment. These features represent that the proposed meta-absorber design can be utilized not only for efficient infrared photodetectors on silicon but for various sensing applications with high sensitivity and functionality. |
---|