Cargando…
Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258418/ https://www.ncbi.nlm.nih.gov/pubmed/34239541 http://dx.doi.org/10.3389/fgene.2021.675686 |
_version_ | 1783718502702514176 |
---|---|
author | Raina, Aamir Sahu, Parmeshwar K. Laskar, Rafiul Amin Rajora, Nitika Sao, Richa Khan, Samiullah Ganai, Rais A. |
author_facet | Raina, Aamir Sahu, Parmeshwar K. Laskar, Rafiul Amin Rajora, Nitika Sao, Richa Khan, Samiullah Ganai, Rais A. |
author_sort | Raina, Aamir |
collection | PubMed |
description | Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development. |
format | Online Article Text |
id | pubmed-8258418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82584182021-07-07 Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps Raina, Aamir Sahu, Parmeshwar K. Laskar, Rafiul Amin Rajora, Nitika Sao, Richa Khan, Samiullah Ganai, Rais A. Front Genet Genetics Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development. Frontiers Media S.A. 2021-06-22 /pmc/articles/PMC8258418/ /pubmed/34239541 http://dx.doi.org/10.3389/fgene.2021.675686 Text en Copyright © 2021 Raina, Sahu, Laskar, Rajora, Sao, Khan and Ganai. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Raina, Aamir Sahu, Parmeshwar K. Laskar, Rafiul Amin Rajora, Nitika Sao, Richa Khan, Samiullah Ganai, Rais A. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title | Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title_full | Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title_fullStr | Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title_full_unstemmed | Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title_short | Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps |
title_sort | mechanisms of genome maintenance in plants: playing it safe with breaks and bumps |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258418/ https://www.ncbi.nlm.nih.gov/pubmed/34239541 http://dx.doi.org/10.3389/fgene.2021.675686 |
work_keys_str_mv | AT rainaaamir mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT sahuparmeshwark mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT laskarrafiulamin mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT rajoranitika mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT saoricha mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT khansamiullah mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps AT ganairaisa mechanismsofgenomemaintenanceinplantsplayingitsafewithbreaksandbumps |