Cargando…
In vitro assessment of the efficiency of the PIM-1 kinase pharmacological inhibitor as a potential treatment for Burkitt's lymphoma
Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is hig...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258613/ https://www.ncbi.nlm.nih.gov/pubmed/34267815 http://dx.doi.org/10.3892/ol.2021.12883 |
Sumario: | Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is high. Overexpression of the proto-oncogene proviral integration of the Moloney murine leukemia virus (PIM-1) kinase is associated with the development of hematological abnormalities, including Burkitt's lymphoma (BL). PIM-1 primarily exerts anti-apoptotic activities through BAD phosphorylation. The aim of the present study was to investigate the in vitro efficiency of a PIM-1 kinase pharmacological inhibitor (PIM1-1) in BL. The impact of PIM1-1 was evaluated in terms of the viability and apoptosis status of the BL B cell lines, Raji and Daudi, compared with K562 leukemia cells, which highly express PIM-1. Cell viability and apoptotic status were assessed with western blotting, and PIM-1 gene expression was assessed with reverse transcription-quantitative PCR. After 48 h of treatment, PIM1-1 inhibited the Daudi, Raji and K562 cell viability with a half-maximal inhibitory concentration corresponding to 10, 20 and 30 µM PIM1-1, respectively. A significant decrease of ERK phosphorylation was detected in PIM1-1-treated Daudi cells, confirming the antiproliferative effect. The addition of 10 µM PIM1-1 significantly decreased the PIM-1 protein and gene expression in Daudi cells. An inhibition of the pro-apoptotic BAD phosphorylation was observed in the Daudi cells treated with 0.1–1 µM PIM1-1 and 10 µM PIM1-1 decreased BAD phosphorylation in the Raji cells. The apoptotic status of both PIM1-1-treated cells lines were confirmed with the detection of cleaved capase-3. However, no change in cell viability and PIM-1 protein expression was observed in the 10 µM PIM1-1-treated K562 cells. In conclusion, the findings indicated that the PIM1-1 pharmacological inhibitor may have therapeutic potential in BL, but with lower efficiency in leukemia. |
---|