Cargando…
Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on in...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258979/ https://www.ncbi.nlm.nih.gov/pubmed/34023484 http://dx.doi.org/10.1016/j.molmet.2021.101260 |
_version_ | 1783718594074378240 |
---|---|
author | McEwan, Sara Kwon, Hyokjoon Tahiri, Azeddine Shanmugarajah, Nivetha Cai, Weikang Ke, Jin Huang, Tianwen Belton, Ariana Singh, Bhagat Wang, Le Pang, Zhiping P. Dirice, Ercument Engel, Esteban A. El Ouaamari, Abdelfattah |
author_facet | McEwan, Sara Kwon, Hyokjoon Tahiri, Azeddine Shanmugarajah, Nivetha Cai, Weikang Ke, Jin Huang, Tianwen Belton, Ariana Singh, Bhagat Wang, Le Pang, Zhiping P. Dirice, Ercument Engel, Esteban A. El Ouaamari, Abdelfattah |
author_sort | McEwan, Sara |
collection | PubMed |
description | The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS: We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS: Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION: Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement. |
format | Online Article Text |
id | pubmed-8258979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82589792021-07-12 Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells McEwan, Sara Kwon, Hyokjoon Tahiri, Azeddine Shanmugarajah, Nivetha Cai, Weikang Ke, Jin Huang, Tianwen Belton, Ariana Singh, Bhagat Wang, Le Pang, Zhiping P. Dirice, Ercument Engel, Esteban A. El Ouaamari, Abdelfattah Mol Metab Original Article The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS: We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS: Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION: Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement. Elsevier 2021-05-21 /pmc/articles/PMC8258979/ /pubmed/34023484 http://dx.doi.org/10.1016/j.molmet.2021.101260 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article McEwan, Sara Kwon, Hyokjoon Tahiri, Azeddine Shanmugarajah, Nivetha Cai, Weikang Ke, Jin Huang, Tianwen Belton, Ariana Singh, Bhagat Wang, Le Pang, Zhiping P. Dirice, Ercument Engel, Esteban A. El Ouaamari, Abdelfattah Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title_full | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title_fullStr | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title_full_unstemmed | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title_short | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
title_sort | deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258979/ https://www.ncbi.nlm.nih.gov/pubmed/34023484 http://dx.doi.org/10.1016/j.molmet.2021.101260 |
work_keys_str_mv | AT mcewansara deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT kwonhyokjoon deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT tahiriazeddine deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT shanmugarajahnivetha deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT caiweikang deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT kejin deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT huangtianwen deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT beltonariana deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT singhbhagat deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT wangle deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT pangzhipingp deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT diriceercument deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT engelestebana deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells AT elouaamariabdelfattah deconstructingtheoriginsofsexualdimorphisminsensorymodulationofpancreaticbcells |