Cargando…
Current status and limitations of artificial intelligence in colonoscopy
BACKGROUND: Artificial intelligence (AI) using deep learning methods for polyp detection (CADe) and characterization (CADx) is on the verge of clinical application. CADe already implied its potential use in randomized controlled trials. Further efforts are needed to take CADx to the next level of de...
Autores principales: | Hann, Alexander, Troya, Joel, Fitting, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259277/ https://www.ncbi.nlm.nih.gov/pubmed/34617420 http://dx.doi.org/10.1002/ueg2.12108 |
Ejemplares similares
-
Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions
por: Brand, Markus, et al.
Publicado: (2022) -
Fine‐tuning the artificial intelligence experience in endoscopy
por: Siau, Keith, et al.
Publicado: (2022) -
Survey on the perceptions of UK gastroenterologists and endoscopists to artificial intelligence
por: Kader, Rawen, et al.
Publicado: (2022) -
My approach to water-assisted colonoscopy
por: Siau, Keith, et al.
Publicado: (2019) -
JAG consensus statements for training and certification in colonoscopy
por: Siau, Keith, et al.
Publicado: (2023)