Cargando…
Noncollapsibility and its role in quantifying confounding bias in logistic regression
BACKGROUND: Confounding bias is a common concern in epidemiological research. Its presence is often determined by comparing exposure effects between univariable- and multivariable regression models, using an arbitrary threshold of a 10% difference to indicate confounding bias. However, many clinical...
Autores principales: | Schuster, Noah A., Twisk, Jos W. R., ter Riet, Gerben, Heymans, Martijn W., Rijnhart, Judith J. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259440/ https://www.ncbi.nlm.nih.gov/pubmed/34225653 http://dx.doi.org/10.1186/s12874-021-01316-8 |
Ejemplares similares
-
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023) -
Comparison of logistic-regression based methods for simple mediation analysis with a dichotomous outcome variable
por: Rijnhart, Judith J. M., et al.
Publicado: (2019) -
Intention-to-treat analysis when only a baseline value is available
por: Twisk, Jos WR., et al.
Publicado: (2020) -
Assessing the Robustness of Mediation Analysis Results Using Multiverse Analysis
por: Rijnhart, Judith J. M., et al.
Publicado: (2021) -
Comparison of methods for the analysis of relatively simple mediation models
por: Rijnhart, Judith J.M., et al.
Publicado: (2017)