Cargando…

In vivo kinetics of SARS-CoV-2 infection and its relationship with a person’s infectiousness

The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person’s infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection and estima...

Descripción completa

Detalles Bibliográficos
Autores principales: Ke, Ruian, Zitzmann, Carolin, Ho, David D., Ribeiro, Ruy M., Perelson, Alan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259912/
https://www.ncbi.nlm.nih.gov/pubmed/34230935
http://dx.doi.org/10.1101/2021.06.26.21259581
Descripción
Sumario:The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person’s infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection and estimate key within-host parameters such as the infected cell half-life and the within-host reproductive number. We then develop a model linking VL to infectiousness, showing that a person’s infectiousness increases sub-linearly with VL. We show that the logarithm of the VL in the upper respiratory tract (URT) is a better surrogate of infectiousness than the VL itself. Using data on VL and the predicted infectiousness, we further incorporated data on antigen and reverse transcription polymerase chain reaction (RT-PCR) tests and compared their usefulness in detecting infection and preventing transmission. We found that RT-PCR tests perform better than antigen tests assuming equal testing frequency; however, more frequent antigen testing may perform equally well with RT-PCR tests at a lower cost, but with many more false-negative tests. Overall, our models provide a quantitative framework for inferring the impact of therapeutics and vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing strategies.