Cargando…

Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages

Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is dete...

Descripción completa

Detalles Bibliográficos
Autores principales: Petrone, Mary E., Rothman, Jessica E., Breban, Mallery I., Ott, Isabel M., Russell, Alexis, Lasek-Nesselquist, Erica, Kelly, Kevin, Omerza, Greg, Renzette, Nicholas, Watkins, Anne E., Kalinich, Chaney C., Alpert, Tara, Brito, Anderson F., Earnest, Rebecca, Tikhonova, Irina R., Castaldi, Christopher, Kelly, John P., Shudt, Matthew, Plitnick, Jonathan, Schneider, Erasmus, Murphy, Steven, Neal, Caleb, Laszlo, Eva, Altajar, Ahmad, Pearson, Claire, Muyombwe, Anthony, Downing, Randy, Razeq, Jafar, Niccolai, Linda, Wilson, Madeline S., Anderson, Margaret L., Wang, Jianhui, Liu, Chen, Hui, Pei, Mane, Shrikant, Taylor, Bradford P., Hanage, William P., Landry, Marie L., Peaper, David R., Bilguvar, Kaya, Fauver, Joseph R., Vogels, Chantal B.F., Gardner, Lauren M., Pitzer, Virginia E., St. George, Kirsten, Adams, Mark D., Grubaugh, Nathan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259915/
https://www.ncbi.nlm.nih.gov/pubmed/34230938
http://dx.doi.org/10.1101/2021.07.01.21259859
_version_ 1783718732393086976
author Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Ott, Isabel M.
Russell, Alexis
Lasek-Nesselquist, Erica
Kelly, Kevin
Omerza, Greg
Renzette, Nicholas
Watkins, Anne E.
Kalinich, Chaney C.
Alpert, Tara
Brito, Anderson F.
Earnest, Rebecca
Tikhonova, Irina R.
Castaldi, Christopher
Kelly, John P.
Shudt, Matthew
Plitnick, Jonathan
Schneider, Erasmus
Murphy, Steven
Neal, Caleb
Laszlo, Eva
Altajar, Ahmad
Pearson, Claire
Muyombwe, Anthony
Downing, Randy
Razeq, Jafar
Niccolai, Linda
Wilson, Madeline S.
Anderson, Margaret L.
Wang, Jianhui
Liu, Chen
Hui, Pei
Mane, Shrikant
Taylor, Bradford P.
Hanage, William P.
Landry, Marie L.
Peaper, David R.
Bilguvar, Kaya
Fauver, Joseph R.
Vogels, Chantal B.F.
Gardner, Lauren M.
Pitzer, Virginia E.
St. George, Kirsten
Adams, Mark D.
Grubaugh, Nathan D.
author_facet Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Ott, Isabel M.
Russell, Alexis
Lasek-Nesselquist, Erica
Kelly, Kevin
Omerza, Greg
Renzette, Nicholas
Watkins, Anne E.
Kalinich, Chaney C.
Alpert, Tara
Brito, Anderson F.
Earnest, Rebecca
Tikhonova, Irina R.
Castaldi, Christopher
Kelly, John P.
Shudt, Matthew
Plitnick, Jonathan
Schneider, Erasmus
Murphy, Steven
Neal, Caleb
Laszlo, Eva
Altajar, Ahmad
Pearson, Claire
Muyombwe, Anthony
Downing, Randy
Razeq, Jafar
Niccolai, Linda
Wilson, Madeline S.
Anderson, Margaret L.
Wang, Jianhui
Liu, Chen
Hui, Pei
Mane, Shrikant
Taylor, Bradford P.
Hanage, William P.
Landry, Marie L.
Peaper, David R.
Bilguvar, Kaya
Fauver, Joseph R.
Vogels, Chantal B.F.
Gardner, Lauren M.
Pitzer, Virginia E.
St. George, Kirsten
Adams, Mark D.
Grubaugh, Nathan D.
author_sort Petrone, Mary E.
collection PubMed
description Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R(t)) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R(t) of B.1.1.7 was 6–10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings.
format Online
Article
Text
id pubmed-8259915
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-82599152021-07-07 Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Ott, Isabel M. Russell, Alexis Lasek-Nesselquist, Erica Kelly, Kevin Omerza, Greg Renzette, Nicholas Watkins, Anne E. Kalinich, Chaney C. Alpert, Tara Brito, Anderson F. Earnest, Rebecca Tikhonova, Irina R. Castaldi, Christopher Kelly, John P. Shudt, Matthew Plitnick, Jonathan Schneider, Erasmus Murphy, Steven Neal, Caleb Laszlo, Eva Altajar, Ahmad Pearson, Claire Muyombwe, Anthony Downing, Randy Razeq, Jafar Niccolai, Linda Wilson, Madeline S. Anderson, Margaret L. Wang, Jianhui Liu, Chen Hui, Pei Mane, Shrikant Taylor, Bradford P. Hanage, William P. Landry, Marie L. Peaper, David R. Bilguvar, Kaya Fauver, Joseph R. Vogels, Chantal B.F. Gardner, Lauren M. Pitzer, Virginia E. St. George, Kirsten Adams, Mark D. Grubaugh, Nathan D. medRxiv Article Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R(t)) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R(t) of B.1.1.7 was 6–10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings. Cold Spring Harbor Laboratory 2021-07-02 /pmc/articles/PMC8259915/ /pubmed/34230938 http://dx.doi.org/10.1101/2021.07.01.21259859 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Ott, Isabel M.
Russell, Alexis
Lasek-Nesselquist, Erica
Kelly, Kevin
Omerza, Greg
Renzette, Nicholas
Watkins, Anne E.
Kalinich, Chaney C.
Alpert, Tara
Brito, Anderson F.
Earnest, Rebecca
Tikhonova, Irina R.
Castaldi, Christopher
Kelly, John P.
Shudt, Matthew
Plitnick, Jonathan
Schneider, Erasmus
Murphy, Steven
Neal, Caleb
Laszlo, Eva
Altajar, Ahmad
Pearson, Claire
Muyombwe, Anthony
Downing, Randy
Razeq, Jafar
Niccolai, Linda
Wilson, Madeline S.
Anderson, Margaret L.
Wang, Jianhui
Liu, Chen
Hui, Pei
Mane, Shrikant
Taylor, Bradford P.
Hanage, William P.
Landry, Marie L.
Peaper, David R.
Bilguvar, Kaya
Fauver, Joseph R.
Vogels, Chantal B.F.
Gardner, Lauren M.
Pitzer, Virginia E.
St. George, Kirsten
Adams, Mark D.
Grubaugh, Nathan D.
Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title_full Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title_fullStr Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title_full_unstemmed Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title_short Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
title_sort combining genomic and epidemiological data to compare the transmissibility of sars-cov-2 lineages
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259915/
https://www.ncbi.nlm.nih.gov/pubmed/34230938
http://dx.doi.org/10.1101/2021.07.01.21259859
work_keys_str_mv AT petronemarye combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT rothmanjessicae combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT brebanmalleryi combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT ottisabelm combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT russellalexis combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT laseknesselquisterica combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT kellykevin combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT omerzagreg combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT renzettenicholas combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT watkinsannee combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT kalinichchaneyc combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT alperttara combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT britoandersonf combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT earnestrebecca combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT tikhonovairinar combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT castaldichristopher combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT kellyjohnp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT shudtmatthew combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT plitnickjonathan combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT schneidererasmus combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT murphysteven combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT nealcaleb combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT laszloeva combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT altajarahmad combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT pearsonclaire combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT muyombweanthony combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT downingrandy combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT razeqjafar combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT niccolailinda combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT wilsonmadelines combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT andersonmargaretl combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT wangjianhui combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT liuchen combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT huipei combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT maneshrikant combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT taylorbradfordp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT hanagewilliamp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT landrymariel combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT peaperdavidr combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT bilguvarkaya combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT fauverjosephr combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT vogelschantalbf combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT gardnerlaurenm combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT pitzervirginiae combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT stgeorgekirsten combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT adamsmarkd combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages
AT grubaughnathand combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages