Cargando…
Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages
Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is dete...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259915/ https://www.ncbi.nlm.nih.gov/pubmed/34230938 http://dx.doi.org/10.1101/2021.07.01.21259859 |
_version_ | 1783718732393086976 |
---|---|
author | Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Ott, Isabel M. Russell, Alexis Lasek-Nesselquist, Erica Kelly, Kevin Omerza, Greg Renzette, Nicholas Watkins, Anne E. Kalinich, Chaney C. Alpert, Tara Brito, Anderson F. Earnest, Rebecca Tikhonova, Irina R. Castaldi, Christopher Kelly, John P. Shudt, Matthew Plitnick, Jonathan Schneider, Erasmus Murphy, Steven Neal, Caleb Laszlo, Eva Altajar, Ahmad Pearson, Claire Muyombwe, Anthony Downing, Randy Razeq, Jafar Niccolai, Linda Wilson, Madeline S. Anderson, Margaret L. Wang, Jianhui Liu, Chen Hui, Pei Mane, Shrikant Taylor, Bradford P. Hanage, William P. Landry, Marie L. Peaper, David R. Bilguvar, Kaya Fauver, Joseph R. Vogels, Chantal B.F. Gardner, Lauren M. Pitzer, Virginia E. St. George, Kirsten Adams, Mark D. Grubaugh, Nathan D. |
author_facet | Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Ott, Isabel M. Russell, Alexis Lasek-Nesselquist, Erica Kelly, Kevin Omerza, Greg Renzette, Nicholas Watkins, Anne E. Kalinich, Chaney C. Alpert, Tara Brito, Anderson F. Earnest, Rebecca Tikhonova, Irina R. Castaldi, Christopher Kelly, John P. Shudt, Matthew Plitnick, Jonathan Schneider, Erasmus Murphy, Steven Neal, Caleb Laszlo, Eva Altajar, Ahmad Pearson, Claire Muyombwe, Anthony Downing, Randy Razeq, Jafar Niccolai, Linda Wilson, Madeline S. Anderson, Margaret L. Wang, Jianhui Liu, Chen Hui, Pei Mane, Shrikant Taylor, Bradford P. Hanage, William P. Landry, Marie L. Peaper, David R. Bilguvar, Kaya Fauver, Joseph R. Vogels, Chantal B.F. Gardner, Lauren M. Pitzer, Virginia E. St. George, Kirsten Adams, Mark D. Grubaugh, Nathan D. |
author_sort | Petrone, Mary E. |
collection | PubMed |
description | Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R(t)) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R(t) of B.1.1.7 was 6–10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings. |
format | Online Article Text |
id | pubmed-8259915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-82599152021-07-07 Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Ott, Isabel M. Russell, Alexis Lasek-Nesselquist, Erica Kelly, Kevin Omerza, Greg Renzette, Nicholas Watkins, Anne E. Kalinich, Chaney C. Alpert, Tara Brito, Anderson F. Earnest, Rebecca Tikhonova, Irina R. Castaldi, Christopher Kelly, John P. Shudt, Matthew Plitnick, Jonathan Schneider, Erasmus Murphy, Steven Neal, Caleb Laszlo, Eva Altajar, Ahmad Pearson, Claire Muyombwe, Anthony Downing, Randy Razeq, Jafar Niccolai, Linda Wilson, Madeline S. Anderson, Margaret L. Wang, Jianhui Liu, Chen Hui, Pei Mane, Shrikant Taylor, Bradford P. Hanage, William P. Landry, Marie L. Peaper, David R. Bilguvar, Kaya Fauver, Joseph R. Vogels, Chantal B.F. Gardner, Lauren M. Pitzer, Virginia E. St. George, Kirsten Adams, Mark D. Grubaugh, Nathan D. medRxiv Article Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R(t)) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R(t) of B.1.1.7 was 6–10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings. Cold Spring Harbor Laboratory 2021-07-02 /pmc/articles/PMC8259915/ /pubmed/34230938 http://dx.doi.org/10.1101/2021.07.01.21259859 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Ott, Isabel M. Russell, Alexis Lasek-Nesselquist, Erica Kelly, Kevin Omerza, Greg Renzette, Nicholas Watkins, Anne E. Kalinich, Chaney C. Alpert, Tara Brito, Anderson F. Earnest, Rebecca Tikhonova, Irina R. Castaldi, Christopher Kelly, John P. Shudt, Matthew Plitnick, Jonathan Schneider, Erasmus Murphy, Steven Neal, Caleb Laszlo, Eva Altajar, Ahmad Pearson, Claire Muyombwe, Anthony Downing, Randy Razeq, Jafar Niccolai, Linda Wilson, Madeline S. Anderson, Margaret L. Wang, Jianhui Liu, Chen Hui, Pei Mane, Shrikant Taylor, Bradford P. Hanage, William P. Landry, Marie L. Peaper, David R. Bilguvar, Kaya Fauver, Joseph R. Vogels, Chantal B.F. Gardner, Lauren M. Pitzer, Virginia E. St. George, Kirsten Adams, Mark D. Grubaugh, Nathan D. Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title | Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title_full | Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title_fullStr | Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title_full_unstemmed | Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title_short | Combining genomic and epidemiological data to compare the transmissibility of SARS-CoV-2 lineages |
title_sort | combining genomic and epidemiological data to compare the transmissibility of sars-cov-2 lineages |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259915/ https://www.ncbi.nlm.nih.gov/pubmed/34230938 http://dx.doi.org/10.1101/2021.07.01.21259859 |
work_keys_str_mv | AT petronemarye combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT rothmanjessicae combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT brebanmalleryi combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT ottisabelm combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT russellalexis combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT laseknesselquisterica combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT kellykevin combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT omerzagreg combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT renzettenicholas combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT watkinsannee combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT kalinichchaneyc combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT alperttara combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT britoandersonf combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT earnestrebecca combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT tikhonovairinar combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT castaldichristopher combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT kellyjohnp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT shudtmatthew combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT plitnickjonathan combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT schneidererasmus combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT murphysteven combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT nealcaleb combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT laszloeva combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT altajarahmad combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT pearsonclaire combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT muyombweanthony combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT downingrandy combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT razeqjafar combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT niccolailinda combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT wilsonmadelines combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT andersonmargaretl combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT wangjianhui combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT liuchen combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT huipei combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT maneshrikant combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT taylorbradfordp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT hanagewilliamp combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT landrymariel combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT peaperdavidr combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT bilguvarkaya combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT fauverjosephr combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT vogelschantalbf combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT gardnerlaurenm combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT pitzervirginiae combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT stgeorgekirsten combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT adamsmarkd combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages AT grubaughnathand combininggenomicandepidemiologicaldatatocomparethetransmissibilityofsarscov2lineages |