Cargando…

3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report

This study aimed to provide a preliminary description of the sagittal and transverse plane kinematics of the thoracolumbar spine of Mangalarga Marchador (MM) horses performing the marcha batida gait, led in-hand. We evaluated the pattern of angular movement and the mean amplitude of six specific ang...

Descripción completa

Detalles Bibliográficos
Autores principales: Simonato, Samuel P., Bernardina, Gustavo R. D., Ferreira, Leandro C. R., Silvatti, Amanda P., Barcelos, Kate M. C., da Fonseca, Brunna P. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259994/
https://www.ncbi.nlm.nih.gov/pubmed/34228737
http://dx.doi.org/10.1371/journal.pone.0253697
_version_ 1783718750833344512
author Simonato, Samuel P.
Bernardina, Gustavo R. D.
Ferreira, Leandro C. R.
Silvatti, Amanda P.
Barcelos, Kate M. C.
da Fonseca, Brunna P. A.
author_facet Simonato, Samuel P.
Bernardina, Gustavo R. D.
Ferreira, Leandro C. R.
Silvatti, Amanda P.
Barcelos, Kate M. C.
da Fonseca, Brunna P. A.
author_sort Simonato, Samuel P.
collection PubMed
description This study aimed to provide a preliminary description of the sagittal and transverse plane kinematics of the thoracolumbar spine of Mangalarga Marchador (MM) horses performing the marcha batida gait, led in-hand. We evaluated the pattern of angular movement and the mean amplitude of six specific angles. An optoelectronic system was used for 3D kinematic analysis (19 cameras, 250 Hz). They were positioned around the horses and an acquisition volume of 16 × 4.8 × 3 meters was used. Eight retroreflective markers were fixed on the spine of the animals over thoracic vertebrae 8 (T8), 12 (T12), 15 (T15) and 18 (T18); over the lumbar vertebrae 3 (L3) and 5 (L5); over the 1st sacral vertebra (S1); and over the 1st coccygeal vertebra (CD1). Five trials, led from a halter, with three complete gait cycles were evaluated for each marcha batida horse. The 3D coordinates of the markers were filtered with a second-order, low-pass, Butterworth filter (10 Hz). Six angles: T8-T12-T15, T12-T15-T18, T12-T18-L5, T15-T18-L3, T18-L3-L5, and L3-S1-CD1 were obtained and projected in the sagittal (Flexion and Extension) and transverse (Lateral bending) planes. We calculated, for each angle to represent the spine movements, the mean and standard deviation of the range of motion (ROM, difference between the maximum and minimum values in a stride cycle). In order to describe the movement over an average stride cycle we calculated the mean curve of angle variation. The T8-T12-T15 angle presented the largest ROM in the transverse plane, while in the sagittal plane the T8-T12-T15, T12-T15-T18 and T12-T18-L5 angles presented the largest ROMs. The L3-S1-CD1 angle (lumbosacral region) presented the lowest ROM in both planes. A reduced flexion close to a neutral spine was found, predominantly during the diagonal support and in the cranial thoracic region. At the same time, the thoracolumbar region remains in an extension which is highlighted in the lumbosacral region. During the change of the support phase, the cranial thoracic region moved from a flexion to a slight extent, and the thoracolumbar region was flexed which is emphasized in the lumbosacral region. The lateral bending of the spine followed the direction of the diagonal supports. The small amplitude in the latero-lateral and dorsoventral movements of the thoracolumbar spine of MM horses during the marcha batida gait could contribute to the smooth and natural sensations experienced when riding in this gait. The lower mobility of these angles should be considered during the clinical examination of marcha batida-gaited horses.
format Online
Article
Text
id pubmed-8259994
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-82599942021-07-19 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report Simonato, Samuel P. Bernardina, Gustavo R. D. Ferreira, Leandro C. R. Silvatti, Amanda P. Barcelos, Kate M. C. da Fonseca, Brunna P. A. PLoS One Research Article This study aimed to provide a preliminary description of the sagittal and transverse plane kinematics of the thoracolumbar spine of Mangalarga Marchador (MM) horses performing the marcha batida gait, led in-hand. We evaluated the pattern of angular movement and the mean amplitude of six specific angles. An optoelectronic system was used for 3D kinematic analysis (19 cameras, 250 Hz). They were positioned around the horses and an acquisition volume of 16 × 4.8 × 3 meters was used. Eight retroreflective markers were fixed on the spine of the animals over thoracic vertebrae 8 (T8), 12 (T12), 15 (T15) and 18 (T18); over the lumbar vertebrae 3 (L3) and 5 (L5); over the 1st sacral vertebra (S1); and over the 1st coccygeal vertebra (CD1). Five trials, led from a halter, with three complete gait cycles were evaluated for each marcha batida horse. The 3D coordinates of the markers were filtered with a second-order, low-pass, Butterworth filter (10 Hz). Six angles: T8-T12-T15, T12-T15-T18, T12-T18-L5, T15-T18-L3, T18-L3-L5, and L3-S1-CD1 were obtained and projected in the sagittal (Flexion and Extension) and transverse (Lateral bending) planes. We calculated, for each angle to represent the spine movements, the mean and standard deviation of the range of motion (ROM, difference between the maximum and minimum values in a stride cycle). In order to describe the movement over an average stride cycle we calculated the mean curve of angle variation. The T8-T12-T15 angle presented the largest ROM in the transverse plane, while in the sagittal plane the T8-T12-T15, T12-T15-T18 and T12-T18-L5 angles presented the largest ROMs. The L3-S1-CD1 angle (lumbosacral region) presented the lowest ROM in both planes. A reduced flexion close to a neutral spine was found, predominantly during the diagonal support and in the cranial thoracic region. At the same time, the thoracolumbar region remains in an extension which is highlighted in the lumbosacral region. During the change of the support phase, the cranial thoracic region moved from a flexion to a slight extent, and the thoracolumbar region was flexed which is emphasized in the lumbosacral region. The lateral bending of the spine followed the direction of the diagonal supports. The small amplitude in the latero-lateral and dorsoventral movements of the thoracolumbar spine of MM horses during the marcha batida gait could contribute to the smooth and natural sensations experienced when riding in this gait. The lower mobility of these angles should be considered during the clinical examination of marcha batida-gaited horses. Public Library of Science 2021-07-06 /pmc/articles/PMC8259994/ /pubmed/34228737 http://dx.doi.org/10.1371/journal.pone.0253697 Text en © 2021 Simonato et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Simonato, Samuel P.
Bernardina, Gustavo R. D.
Ferreira, Leandro C. R.
Silvatti, Amanda P.
Barcelos, Kate M. C.
da Fonseca, Brunna P. A.
3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title_full 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title_fullStr 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title_full_unstemmed 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title_short 3D kinematic of the thoracolumbar spine in Mangalarga Marchador horses performing the marcha batida gait and being led by hand—A preliminary report
title_sort 3d kinematic of the thoracolumbar spine in mangalarga marchador horses performing the marcha batida gait and being led by hand—a preliminary report
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259994/
https://www.ncbi.nlm.nih.gov/pubmed/34228737
http://dx.doi.org/10.1371/journal.pone.0253697
work_keys_str_mv AT simonatosamuelp 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport
AT bernardinagustavord 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport
AT ferreiraleandrocr 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport
AT silvattiamandap 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport
AT barceloskatemc 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport
AT dafonsecabrunnapa 3dkinematicofthethoracolumbarspineinmangalargamarchadorhorsesperformingthemarchabatidagaitandbeingledbyhandapreliminaryreport