Cargando…
Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis
BACKGROUND: Timely interventions in women presenting with preterm labour can substantially improve health outcomes for preterm babies. However, establishing such a diagnosis is very challenging, as signs and symptoms of preterm labour are common and can be nonspecific. We aimed to develop and extern...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259998/ https://www.ncbi.nlm.nih.gov/pubmed/34228732 http://dx.doi.org/10.1371/journal.pmed.1003686 |
_version_ | 1783718751786500096 |
---|---|
author | Stock, Sarah J. Horne, Margaret Bruijn, Merel White, Helen Boyd, Kathleen A. Heggie, Robert Wotherspoon, Lisa Aucott, Lorna Morris, Rachel K. Dorling, Jon Jackson, Lesley Chandiramani, Manju David, Anna L. Khalil, Asma Shennan, Andrew van Baaren, Gert-Jan Hodgetts-Morton, Victoria Lavender, Tina Schuit, Ewoud Harper-Clarke, Susan Mol, Ben W. Riley, Richard D. Norman, Jane E. Norrie, John |
author_facet | Stock, Sarah J. Horne, Margaret Bruijn, Merel White, Helen Boyd, Kathleen A. Heggie, Robert Wotherspoon, Lisa Aucott, Lorna Morris, Rachel K. Dorling, Jon Jackson, Lesley Chandiramani, Manju David, Anna L. Khalil, Asma Shennan, Andrew van Baaren, Gert-Jan Hodgetts-Morton, Victoria Lavender, Tina Schuit, Ewoud Harper-Clarke, Susan Mol, Ben W. Riley, Richard D. Norman, Jane E. Norrie, John |
author_sort | Stock, Sarah J. |
collection | PubMed |
description | BACKGROUND: Timely interventions in women presenting with preterm labour can substantially improve health outcomes for preterm babies. However, establishing such a diagnosis is very challenging, as signs and symptoms of preterm labour are common and can be nonspecific. We aimed to develop and externally validate a risk prediction model using concentration of vaginal fluid fetal fibronectin (quantitative fFN), in combination with clinical risk factors, for the prediction of spontaneous preterm birth and assessed its cost-effectiveness. METHODS AND FINDINGS: Pregnant women included in the analyses were 22(+0) to 34(+6) weeks gestation with signs and symptoms of preterm labour. The primary outcome was spontaneous preterm birth within 7 days of quantitative fFN test. The risk prediction model was developed and internally validated in an individual participant data (IPD) meta-analysis of 5 European prospective cohort studies (2009 to 2016; 1,783 women; mean age 29.7 years; median BMI 24.8 kg/m(2); 67.6% White; 11.7% smokers; 51.8% nulliparous; 10.4% with multiple pregnancy; 139 [7.8%] with spontaneous preterm birth within 7 days). The model was then externally validated in a prospective cohort study in 26 United Kingdom centres (2016 to 2018; 2,924 women; mean age 28.2 years; median BMI 25.4 kg/m(2); 88.2% White; 21% smokers; 35.2% nulliparous; 3.5% with multiple pregnancy; 85 [2.9%] with spontaneous preterm birth within 7 days). The developed risk prediction model for spontaneous preterm birth within 7 days included quantitative fFN, current smoking, not White ethnicity, nulliparity, and multiple pregnancy. After internal validation, the optimism adjusted area under the curve was 0.89 (95% CI 0.86 to 0.92), and the optimism adjusted Nagelkerke R(2) was 35% (95% CI 33% to 37%). On external validation in the prospective UK cohort population, the area under the curve was 0.89 (95% CI 0.84 to 0.94), and Nagelkerke R(2) of 36% (95% CI: 34% to 38%). Recalibration of the model’s intercept was required to ensure overall calibration-in-the-large. A calibration curve suggested close agreement between predicted and observed risks in the range of predictions 0% to 10%, but some miscalibration (underprediction) at higher risks (slope 1.24 (95% CI 1.23 to 1.26)). Despite any miscalibration, the net benefit of the model was higher than “treat all” or “treat none” strategies for thresholds up to about 15% risk. The economic analysis found the prognostic model was cost effective, compared to using qualitative fFN, at a threshold for hospital admission and treatment of ≥2% risk of preterm birth within 7 days. Study limitations include the limited number of participants who are not White and levels of missing data for certain variables in the development dataset. CONCLUSIONS: In this study, we found that a risk prediction model including vaginal fFN concentration and clinical risk factors showed promising performance in the prediction of spontaneous preterm birth within 7 days of test and has potential to inform management decisions for women with threatened preterm labour. Further evaluation of the risk prediction model in clinical practice is required to determine whether the risk prediction model improves clinical outcomes if used in practice. TRIAL REGISTRATION: The study was approved by the West of Scotland Research Ethics Committee (16/WS/0068). The study was registered with ISRCTN Registry (ISRCTN 41598423) and NIHR Portfolio (CPMS: 31277). |
format | Online Article Text |
id | pubmed-8259998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82599982021-07-19 Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis Stock, Sarah J. Horne, Margaret Bruijn, Merel White, Helen Boyd, Kathleen A. Heggie, Robert Wotherspoon, Lisa Aucott, Lorna Morris, Rachel K. Dorling, Jon Jackson, Lesley Chandiramani, Manju David, Anna L. Khalil, Asma Shennan, Andrew van Baaren, Gert-Jan Hodgetts-Morton, Victoria Lavender, Tina Schuit, Ewoud Harper-Clarke, Susan Mol, Ben W. Riley, Richard D. Norman, Jane E. Norrie, John PLoS Med Research Article BACKGROUND: Timely interventions in women presenting with preterm labour can substantially improve health outcomes for preterm babies. However, establishing such a diagnosis is very challenging, as signs and symptoms of preterm labour are common and can be nonspecific. We aimed to develop and externally validate a risk prediction model using concentration of vaginal fluid fetal fibronectin (quantitative fFN), in combination with clinical risk factors, for the prediction of spontaneous preterm birth and assessed its cost-effectiveness. METHODS AND FINDINGS: Pregnant women included in the analyses were 22(+0) to 34(+6) weeks gestation with signs and symptoms of preterm labour. The primary outcome was spontaneous preterm birth within 7 days of quantitative fFN test. The risk prediction model was developed and internally validated in an individual participant data (IPD) meta-analysis of 5 European prospective cohort studies (2009 to 2016; 1,783 women; mean age 29.7 years; median BMI 24.8 kg/m(2); 67.6% White; 11.7% smokers; 51.8% nulliparous; 10.4% with multiple pregnancy; 139 [7.8%] with spontaneous preterm birth within 7 days). The model was then externally validated in a prospective cohort study in 26 United Kingdom centres (2016 to 2018; 2,924 women; mean age 28.2 years; median BMI 25.4 kg/m(2); 88.2% White; 21% smokers; 35.2% nulliparous; 3.5% with multiple pregnancy; 85 [2.9%] with spontaneous preterm birth within 7 days). The developed risk prediction model for spontaneous preterm birth within 7 days included quantitative fFN, current smoking, not White ethnicity, nulliparity, and multiple pregnancy. After internal validation, the optimism adjusted area under the curve was 0.89 (95% CI 0.86 to 0.92), and the optimism adjusted Nagelkerke R(2) was 35% (95% CI 33% to 37%). On external validation in the prospective UK cohort population, the area under the curve was 0.89 (95% CI 0.84 to 0.94), and Nagelkerke R(2) of 36% (95% CI: 34% to 38%). Recalibration of the model’s intercept was required to ensure overall calibration-in-the-large. A calibration curve suggested close agreement between predicted and observed risks in the range of predictions 0% to 10%, but some miscalibration (underprediction) at higher risks (slope 1.24 (95% CI 1.23 to 1.26)). Despite any miscalibration, the net benefit of the model was higher than “treat all” or “treat none” strategies for thresholds up to about 15% risk. The economic analysis found the prognostic model was cost effective, compared to using qualitative fFN, at a threshold for hospital admission and treatment of ≥2% risk of preterm birth within 7 days. Study limitations include the limited number of participants who are not White and levels of missing data for certain variables in the development dataset. CONCLUSIONS: In this study, we found that a risk prediction model including vaginal fFN concentration and clinical risk factors showed promising performance in the prediction of spontaneous preterm birth within 7 days of test and has potential to inform management decisions for women with threatened preterm labour. Further evaluation of the risk prediction model in clinical practice is required to determine whether the risk prediction model improves clinical outcomes if used in practice. TRIAL REGISTRATION: The study was approved by the West of Scotland Research Ethics Committee (16/WS/0068). The study was registered with ISRCTN Registry (ISRCTN 41598423) and NIHR Portfolio (CPMS: 31277). Public Library of Science 2021-07-06 /pmc/articles/PMC8259998/ /pubmed/34228732 http://dx.doi.org/10.1371/journal.pmed.1003686 Text en © 2021 Stock et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Stock, Sarah J. Horne, Margaret Bruijn, Merel White, Helen Boyd, Kathleen A. Heggie, Robert Wotherspoon, Lisa Aucott, Lorna Morris, Rachel K. Dorling, Jon Jackson, Lesley Chandiramani, Manju David, Anna L. Khalil, Asma Shennan, Andrew van Baaren, Gert-Jan Hodgetts-Morton, Victoria Lavender, Tina Schuit, Ewoud Harper-Clarke, Susan Mol, Ben W. Riley, Richard D. Norman, Jane E. Norrie, John Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title | Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title_full | Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title_fullStr | Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title_full_unstemmed | Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title_short | Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis |
title_sort | development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the quids study): a prospective cohort study and individual participant data meta-analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259998/ https://www.ncbi.nlm.nih.gov/pubmed/34228732 http://dx.doi.org/10.1371/journal.pmed.1003686 |
work_keys_str_mv | AT stocksarahj developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT hornemargaret developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT bruijnmerel developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT whitehelen developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT boydkathleena developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT heggierobert developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT wotherspoonlisa developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT aucottlorna developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT morrisrachelk developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT dorlingjon developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT jacksonlesley developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT chandiramanimanju developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT davidannal developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT khalilasma developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT shennanandrew developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT vanbaarengertjan developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT hodgettsmortonvictoria developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT lavendertina developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT schuitewoud developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT harperclarkesusan developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT molbenw developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT rileyrichardd developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT normanjanee developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis AT norriejohn developmentandvalidationofariskpredictionmodelofpretermbirthforwomenwithpretermlaboursymptomsthequidsstudyaprospectivecohortstudyandindividualparticipantdatametaanalysis |