Cargando…

Censored data considerations and analytical approaches for salivary bioscience data

Left censoring in salivary bioscience data occurs when salivary analyte determinations fall below the lower limit of an assay’s measurement range. Conventional statistical approaches for addressing censored values (i.e., recoding as missing, substituting or extrapolating values) may introduce system...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, Hedyeh, Granger, Douglas A., Hamilton, Katrina R., Blair, Clancy, Riis, Jenna L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260151/
https://www.ncbi.nlm.nih.gov/pubmed/34030086
http://dx.doi.org/10.1016/j.psyneuen.2021.105274
_version_ 1783718770454298624
author Ahmadi, Hedyeh
Granger, Douglas A.
Hamilton, Katrina R.
Blair, Clancy
Riis, Jenna L.
author_facet Ahmadi, Hedyeh
Granger, Douglas A.
Hamilton, Katrina R.
Blair, Clancy
Riis, Jenna L.
author_sort Ahmadi, Hedyeh
collection PubMed
description Left censoring in salivary bioscience data occurs when salivary analyte determinations fall below the lower limit of an assay’s measurement range. Conventional statistical approaches for addressing censored values (i.e., recoding as missing, substituting or extrapolating values) may introduce systematic bias. While specialized censored data statistical approaches (i.e., Maximum Likelihood Estimation, Regression on Ordered Statistics, Kaplan-Meier, and general Tobit regression) are available, these methods are rarely implemented in biobehavioral studies that examine salivary biomeasures, and their application to salivary data analysis may be hindered by their sensitivity to skewed data distributions, outliers, and sample size. This study compares descriptive statistics, correlation coefficients, and regression parameter estimates generated via conventional and specialized censored data approaches using salivary C-reactive protein data. We assess differences in statistical estimates across approach and across two levels of censoring (9% and 15%) and examine the sensitivity of our results to sample size. Overall, findings were similar across conventional and censored data approaches, but the implementation of specialized censored data approaches was more efficient (i.e., required little manipulations to the raw analyte data) and appropriate. Based on our review of the findings, we outline preliminary recommendations to enable investigators to more efficiently and effectively reduce statistical bias when working with left-censored salivary biomeasure data.
format Online
Article
Text
id pubmed-8260151
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-82601512021-07-06 Censored data considerations and analytical approaches for salivary bioscience data Ahmadi, Hedyeh Granger, Douglas A. Hamilton, Katrina R. Blair, Clancy Riis, Jenna L. Psychoneuroendocrinology Article Left censoring in salivary bioscience data occurs when salivary analyte determinations fall below the lower limit of an assay’s measurement range. Conventional statistical approaches for addressing censored values (i.e., recoding as missing, substituting or extrapolating values) may introduce systematic bias. While specialized censored data statistical approaches (i.e., Maximum Likelihood Estimation, Regression on Ordered Statistics, Kaplan-Meier, and general Tobit regression) are available, these methods are rarely implemented in biobehavioral studies that examine salivary biomeasures, and their application to salivary data analysis may be hindered by their sensitivity to skewed data distributions, outliers, and sample size. This study compares descriptive statistics, correlation coefficients, and regression parameter estimates generated via conventional and specialized censored data approaches using salivary C-reactive protein data. We assess differences in statistical estimates across approach and across two levels of censoring (9% and 15%) and examine the sensitivity of our results to sample size. Overall, findings were similar across conventional and censored data approaches, but the implementation of specialized censored data approaches was more efficient (i.e., required little manipulations to the raw analyte data) and appropriate. Based on our review of the findings, we outline preliminary recommendations to enable investigators to more efficiently and effectively reduce statistical bias when working with left-censored salivary biomeasure data. 2021-05-17 2021-07 /pmc/articles/PMC8260151/ /pubmed/34030086 http://dx.doi.org/10.1016/j.psyneuen.2021.105274 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Ahmadi, Hedyeh
Granger, Douglas A.
Hamilton, Katrina R.
Blair, Clancy
Riis, Jenna L.
Censored data considerations and analytical approaches for salivary bioscience data
title Censored data considerations and analytical approaches for salivary bioscience data
title_full Censored data considerations and analytical approaches for salivary bioscience data
title_fullStr Censored data considerations and analytical approaches for salivary bioscience data
title_full_unstemmed Censored data considerations and analytical approaches for salivary bioscience data
title_short Censored data considerations and analytical approaches for salivary bioscience data
title_sort censored data considerations and analytical approaches for salivary bioscience data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260151/
https://www.ncbi.nlm.nih.gov/pubmed/34030086
http://dx.doi.org/10.1016/j.psyneuen.2021.105274
work_keys_str_mv AT ahmadihedyeh censoreddataconsiderationsandanalyticalapproachesforsalivarybiosciencedata
AT grangerdouglasa censoreddataconsiderationsandanalyticalapproachesforsalivarybiosciencedata
AT hamiltonkatrinar censoreddataconsiderationsandanalyticalapproachesforsalivarybiosciencedata
AT blairclancy censoreddataconsiderationsandanalyticalapproachesforsalivarybiosciencedata
AT riisjennal censoreddataconsiderationsandanalyticalapproachesforsalivarybiosciencedata