Cargando…

The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis

Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase–ROCK (Rho-associated coiled-coil kinase)–regulatory nonmuscle myosin light-chain...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakai, Yoshiki, Tsunekawa, Mayuka, Ohta, Kohei, Shimizu, Tatsuhiro, Pastuhov, Strahil, Hanafusa, Hiroshi, Hisamoto, Naoki, Matsumoto, Kunihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260174/
https://www.ncbi.nlm.nih.gov/pubmed/33963050
http://dx.doi.org/10.1523/JNEUROSCI.2456-20.2021
_version_ 1783718771891896320
author Sakai, Yoshiki
Tsunekawa, Mayuka
Ohta, Kohei
Shimizu, Tatsuhiro
Pastuhov, Strahil
Hanafusa, Hiroshi
Hisamoto, Naoki
Matsumoto, Kunihiro
author_facet Sakai, Yoshiki
Tsunekawa, Mayuka
Ohta, Kohei
Shimizu, Tatsuhiro
Pastuhov, Strahil
Hanafusa, Hiroshi
Hisamoto, Naoki
Matsumoto, Kunihiro
author_sort Sakai, Yoshiki
collection PubMed
description Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase–ROCK (Rho-associated coiled-coil kinase)–regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown. Here, we show that axon injury activates TLN-1/talin via the cAMP–Epac (exchange protein directly activated by cAMP)–Rap GTPase cascade and that TLN-1 induces multiple downstream events, one of which is integrin inside-out activation, leading to the activation of the RhoA–ROCK signaling pathway. We found that the nonreceptor tyrosine kinase Src, a key mediator of integrin signaling, activates the Rho guanine nucleotide exchange factor EPHX-1/ephexin by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src–RhoGEF–RhoA axis. SIGNIFICANCE STATEMENT The ability of axons to regenerate after injury is governed by cell-intrinsic regeneration pathways. We have previously demonstrated that the Caenorhabditis elegans RhoA GTPase–ROCK (Rho-associated coiled-coil kinase) pathway promotes axon regeneration by inducing MLC-4 phosphorylation. In this study, we found that axon injury activates TLN-1/talin through the cAMP–Epac (exchange protein directly activated by cAMP)–Rap GTPase cascade, leading to integrin inside-out activation, which promotes axonal regeneration by activating the RhoA signaling pathway. In this pathway, SRC-1/Src acts downstream of integrin activation and subsequently activates EPHX-1/ephexin RhoGEF by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src–RhoGEF–RhoA axis.
format Online
Article
Text
id pubmed-8260174
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-82601742021-07-08 The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis Sakai, Yoshiki Tsunekawa, Mayuka Ohta, Kohei Shimizu, Tatsuhiro Pastuhov, Strahil Hanafusa, Hiroshi Hisamoto, Naoki Matsumoto, Kunihiro J Neurosci Research Articles Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase–ROCK (Rho-associated coiled-coil kinase)–regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown. Here, we show that axon injury activates TLN-1/talin via the cAMP–Epac (exchange protein directly activated by cAMP)–Rap GTPase cascade and that TLN-1 induces multiple downstream events, one of which is integrin inside-out activation, leading to the activation of the RhoA–ROCK signaling pathway. We found that the nonreceptor tyrosine kinase Src, a key mediator of integrin signaling, activates the Rho guanine nucleotide exchange factor EPHX-1/ephexin by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src–RhoGEF–RhoA axis. SIGNIFICANCE STATEMENT The ability of axons to regenerate after injury is governed by cell-intrinsic regeneration pathways. We have previously demonstrated that the Caenorhabditis elegans RhoA GTPase–ROCK (Rho-associated coiled-coil kinase) pathway promotes axon regeneration by inducing MLC-4 phosphorylation. In this study, we found that axon injury activates TLN-1/talin through the cAMP–Epac (exchange protein directly activated by cAMP)–Rap GTPase cascade, leading to integrin inside-out activation, which promotes axonal regeneration by activating the RhoA signaling pathway. In this pathway, SRC-1/Src acts downstream of integrin activation and subsequently activates EPHX-1/ephexin RhoGEF by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src–RhoGEF–RhoA axis. Society for Neuroscience 2021-06-02 /pmc/articles/PMC8260174/ /pubmed/33963050 http://dx.doi.org/10.1523/JNEUROSCI.2456-20.2021 Text en Copyright © 2021 Sakai et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Articles
Sakai, Yoshiki
Tsunekawa, Mayuka
Ohta, Kohei
Shimizu, Tatsuhiro
Pastuhov, Strahil
Hanafusa, Hiroshi
Hisamoto, Naoki
Matsumoto, Kunihiro
The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title_full The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title_fullStr The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title_full_unstemmed The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title_short The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis
title_sort integrin signaling network promotes axon regeneration via the src–ephexin–rhoa gtpase signaling axis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260174/
https://www.ncbi.nlm.nih.gov/pubmed/33963050
http://dx.doi.org/10.1523/JNEUROSCI.2456-20.2021
work_keys_str_mv AT sakaiyoshiki theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT tsunekawamayuka theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT ohtakohei theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT shimizutatsuhiro theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT pastuhovstrahil theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT hanafusahiroshi theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT hisamotonaoki theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT matsumotokunihiro theintegrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT sakaiyoshiki integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT tsunekawamayuka integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT ohtakohei integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT shimizutatsuhiro integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT pastuhovstrahil integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT hanafusahiroshi integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT hisamotonaoki integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis
AT matsumotokunihiro integrinsignalingnetworkpromotesaxonregenerationviathesrcephexinrhoagtpasesignalingaxis