Cargando…
Virtual Connectomic Datasets in Alzheimer’s Disease and Aging Using Whole-Brain Network Dynamics Modelling
Large neuroimaging datasets, including information about structural connectivity (SC) and functional connectivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms for automated stratification, diagnosis or prediction. A major obstacle is, howe...
Autores principales: | Arbabyazd, Lucas, Shen, Kelly, Wang, Zheng, Hofmann-Apitius, Martin, Ritter, Petra, McIntosh, Anthony R., Battaglia, Demian, Jirsa, Viktor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260273/ https://www.ncbi.nlm.nih.gov/pubmed/34045210 http://dx.doi.org/10.1523/ENEURO.0475-20.2021 |
Ejemplares similares
-
The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics
por: Melozzi, Francesca, et al.
Publicado: (2017) -
Dynamic Functional Connectivity as a complex random walk: Definitions and the dFCwalk toolbox
por: Arbabyazd, Lucas M., et al.
Publicado: (2020) -
Mapping Language Networks Using the Structural and Dynamic Brain Connectomes
por: Del Gaizo, John, et al.
Publicado: (2017) -
Fluorescence-Based Quantitative Synapse Analysis for Cell Type-Specific Connectomics
por: Kuljis, Dika A., et al.
Publicado: (2019) -
Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain
por: Spiegler, Andreas, et al.
Publicado: (2016)