Cargando…
Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures
PURPOSE: Automatic segmentation and classification of surgical activity is crucial for providing advanced support in computer-assisted interventions and autonomous functionalities in robot-assisted surgeries. Prior works have focused on recognizing either coarse activities, such as phases, or fine-g...
Autores principales: | Ramesh, Sanat, Dall’Alba, Diego, Gonzalez, Cristians, Yu, Tong, Mascagni, Pietro, Mutter, Didier, Marescaux, Jacques, Fiorini, Paolo, Padoy, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260406/ https://www.ncbi.nlm.nih.gov/pubmed/34013464 http://dx.doi.org/10.1007/s11548-021-02388-z |
Ejemplares similares
-
TRandAugment: temporal random augmentation strategy for surgical activity recognition from videos
por: Ramesh, Sanat, et al.
Publicado: (2023) -
Proposal and multicentric validation of a laparoscopic Roux-en-Y gastric bypass surgery ontology
por: Lavanchy, Joël L., et al.
Publicado: (2022) -
Preserving privacy in surgical video analysis using a deep learning classifier to identify out-of-body scenes in endoscopic videos
por: Lavanchy, Joël L., et al.
Publicado: (2023) -
Automatic detection of procedural knowledge in robotic-assisted surgical texts
por: Bombieri, Marco, et al.
Publicado: (2021) -
Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review
por: Pedrett, Romina, et al.
Publicado: (2023)