Cargando…

Comparison of ethanol concentrations in the human brain determined by magnetic resonance spectroscopy and serum ethanol concentrations

AIMS: Ethanol is a widespread substance that inherits desired effects, but also negative consequences with regard to DUI or battery. Where required, the ethanol concentration is usually determined in peripheral venous blood samples, while the brain is the target organ of the ethanol effects. The aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Thierauf-Emberger, Annette, Echle, Judith, Dacko, Michael, Lange, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260420/
https://www.ncbi.nlm.nih.gov/pubmed/32524191
http://dx.doi.org/10.1007/s00414-020-02325-w
Descripción
Sumario:AIMS: Ethanol is a widespread substance that inherits desired effects, but also negative consequences with regard to DUI or battery. Where required, the ethanol concentration is usually determined in peripheral venous blood samples, while the brain is the target organ of the ethanol effects. The aim of this study with three participants was the determination of the ethanol concentration in functionally relevant regions of the brain and the comparison with serum ethanol concentrations. DESIGN: After the uptake of ethanol in a calculated amount, leading to a serum ethanol concentration of 0.99 g/L, the ethanol concentrations in the brain were directly analyzed by means of magnetic resonance spectroscopy on a 3 Tesla human MRI system and normalized to the water content. The measurement voxels were located in the occipital cortex, the cerebellum, the frontal cortex, and the putamen and successively examined. Intermittently blood samples were taken, and serum was analyzed for ethanol using HS-GC-FID. FINDINGS AND CONCLUSIONS: Ethanol concentrations in brain regions normalized to the water content were lower than the measured serum ethanol results and rather homogenous within the three participants and the various regions of the brain. The maximum ethanol concentration in the brain (normalized to water content) was 0.68 g/L. It was measured in the frontal cortex, in which the highest results were gained. The maximum serum concentration was 1.19 g/L. The course of the brain ethanol curve seems to be flatter than the one of the serum ethanol concentrations.