Cargando…
Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens
BACKGROUND AND OBJECTIVE: In the last decades increasingly more systems of artificial intelligence have been established in medicine, which identify diseases or pathologies or discriminate them from complimentary diseases. Up to now the Corvis®ST (Corneal Visualization Scheimpflug Technology, Corvis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260544/ https://www.ncbi.nlm.nih.gov/pubmed/32970190 http://dx.doi.org/10.1007/s00347-020-01231-1 |
_version_ | 1783718829314015232 |
---|---|
author | Langenbucher, Achim Häfner, Larissa Eppig, Timo Seitz, Berthold Szentmáry, Nóra Flockerzi, Elias |
author_facet | Langenbucher, Achim Häfner, Larissa Eppig, Timo Seitz, Berthold Szentmáry, Nóra Flockerzi, Elias |
author_sort | Langenbucher, Achim |
collection | PubMed |
description | BACKGROUND AND OBJECTIVE: In the last decades increasingly more systems of artificial intelligence have been established in medicine, which identify diseases or pathologies or discriminate them from complimentary diseases. Up to now the Corvis®ST (Corneal Visualization Scheimpflug Technology, Corvis®ST, Oculus, Wetzlar, Germany) yielded a binary index for classifying keratoconus but did not enable staging. The purpose of this study was to develop a prediction model, which mimics the topographic keratoconus classification index (TKC) of the Pentacam high resolution (HR, Oculus) with measurement parameters extracted from the Corvis®ST. PATIENTS AND METHODS: In this study 60 measurements from normal subjects (TKC 0) and 379 eyes with keratoconus (TKC 1–4) were recruited. After measurement with the Pentacam HR (target parameter TKC) a measurement with the Corvis®ST device was performed. From this device 6 dynamic response parameters were extracted, which were included in the Corvis biomechanical index (CBI) provided by the Corvis®ST (ARTh, SP-A1, DA ratio 1 mm, DA ratio 2 mm, A1 velocity, max. deformation amplitude). In addition to the TKC as the target, the binarized TKC (1: TKC 1–4, 0: TKC 0) was modelled. The performance of the model was validated with accuracy as an indicator for correct classification made by the algorithm. Misclassifications in the modelling were penalized by the number of stages of deviation between the modelled and measured TKC values. RESULTS: A total of 24 different models of supervised machine learning from 6 different families were tested. For modelling of the TKC stages 0–4, the algorithm based on a support vector machine (SVM) with linear kernel showed the best performance with an accuracy of 65.1% correct classifications. For modelling of binarized TKC, a decision tree with a coarse resolution showed a superior performance with an accuracy of 95.2% correct classifications followed by the SVM with linear or quadratic kernel and a nearest neighborhood classifier with cubic kernel (94.5% each). CONCLUSION: This study aimed to show the principle of supervised machine learning applied to a set-up for the modelled classification of keratoconus staging. Preprocessed measurement data extracted from the Corvis®ST device were used to mimic the TKC provided by the Pentacam device with a series of different algorithms of machine learning. |
format | Online Article Text |
id | pubmed-8260544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-82605442021-07-20 Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens Langenbucher, Achim Häfner, Larissa Eppig, Timo Seitz, Berthold Szentmáry, Nóra Flockerzi, Elias Ophthalmologe Originalien BACKGROUND AND OBJECTIVE: In the last decades increasingly more systems of artificial intelligence have been established in medicine, which identify diseases or pathologies or discriminate them from complimentary diseases. Up to now the Corvis®ST (Corneal Visualization Scheimpflug Technology, Corvis®ST, Oculus, Wetzlar, Germany) yielded a binary index for classifying keratoconus but did not enable staging. The purpose of this study was to develop a prediction model, which mimics the topographic keratoconus classification index (TKC) of the Pentacam high resolution (HR, Oculus) with measurement parameters extracted from the Corvis®ST. PATIENTS AND METHODS: In this study 60 measurements from normal subjects (TKC 0) and 379 eyes with keratoconus (TKC 1–4) were recruited. After measurement with the Pentacam HR (target parameter TKC) a measurement with the Corvis®ST device was performed. From this device 6 dynamic response parameters were extracted, which were included in the Corvis biomechanical index (CBI) provided by the Corvis®ST (ARTh, SP-A1, DA ratio 1 mm, DA ratio 2 mm, A1 velocity, max. deformation amplitude). In addition to the TKC as the target, the binarized TKC (1: TKC 1–4, 0: TKC 0) was modelled. The performance of the model was validated with accuracy as an indicator for correct classification made by the algorithm. Misclassifications in the modelling were penalized by the number of stages of deviation between the modelled and measured TKC values. RESULTS: A total of 24 different models of supervised machine learning from 6 different families were tested. For modelling of the TKC stages 0–4, the algorithm based on a support vector machine (SVM) with linear kernel showed the best performance with an accuracy of 65.1% correct classifications. For modelling of binarized TKC, a decision tree with a coarse resolution showed a superior performance with an accuracy of 95.2% correct classifications followed by the SVM with linear or quadratic kernel and a nearest neighborhood classifier with cubic kernel (94.5% each). CONCLUSION: This study aimed to show the principle of supervised machine learning applied to a set-up for the modelled classification of keratoconus staging. Preprocessed measurement data extracted from the Corvis®ST device were used to mimic the TKC provided by the Pentacam device with a series of different algorithms of machine learning. Springer Medizin 2020-09-24 2021 /pmc/articles/PMC8260544/ /pubmed/32970190 http://dx.doi.org/10.1007/s00347-020-01231-1 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access. Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Originalien Langenbucher, Achim Häfner, Larissa Eppig, Timo Seitz, Berthold Szentmáry, Nóra Flockerzi, Elias Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title | Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title_full | Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title_fullStr | Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title_full_unstemmed | Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title_short | Keratokonusdetektion und Ableitung des Ausprägungsgrades aus den Parametern des Corvis®ST: Eine Studie, basierend auf Algorithmen des Maschinenlernens |
title_sort | keratokonusdetektion und ableitung des ausprägungsgrades aus den parametern des corvis®st: eine studie, basierend auf algorithmen des maschinenlernens |
topic | Originalien |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260544/ https://www.ncbi.nlm.nih.gov/pubmed/32970190 http://dx.doi.org/10.1007/s00347-020-01231-1 |
work_keys_str_mv | AT langenbucherachim keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens AT hafnerlarissa keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens AT eppigtimo keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens AT seitzberthold keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens AT szentmarynora keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens AT flockerzielias keratokonusdetektionundableitungdesauspragungsgradesausdenparameterndescorvissteinestudiebasierendaufalgorithmendesmaschinenlernens |