Cargando…

Scalable Estimation of Epidemic Thresholds via Node Sampling

Infectious or contagious diseases can be transmitted from one person to another through social contact networks. In today’s interconnected global society, such contagion processes can cause global public health hazards, as exemplified by the ongoing Covid-19 pandemic. It is therefore of great practi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dasgupta, Anirban, Sengupta, Srijan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer India 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260572/
https://www.ncbi.nlm.nih.gov/pubmed/34248309
http://dx.doi.org/10.1007/s13171-021-00249-0
Descripción
Sumario:Infectious or contagious diseases can be transmitted from one person to another through social contact networks. In today’s interconnected global society, such contagion processes can cause global public health hazards, as exemplified by the ongoing Covid-19 pandemic. It is therefore of great practical relevance to investigate the network transmission of contagious diseases from the perspective of statistical inference. An important and widely studied boundary condition for contagion processes over networks is the so-called epidemic threshold. The epidemic threshold plays a key role in determining whether a pathogen introduced into a social contact network will cause an epidemic or die out. In this paper, we investigate epidemic thresholds from the perspective of statistical network inference. We identify two major challenges that are caused by high computational and sampling complexity of the epidemic threshold. We develop two statistically accurate and computationally efficient approximation techniques to address these issues under the Chung-Lu modeling framework. The second approximation, which is based on random walk sampling, further enjoys the advantage of requiring data on a vanishingly small fraction of nodes. We establish theoretical guarantees for both methods and demonstrate their empirical superiority.