Cargando…
Timesias: A machine learning pipeline for predicting outcomes from time-series clinical records
The prediction of outcomes is a critical part of the clinical surveillance for hospitalized patients. Here, we present Timesias, a machine learning pipeline which predicts outcomes from real-time sequential clinical data. The strategy implemented in Timesias is the first-place solution in the crowd-...
Autores principales: | Zhang, Hanrui, Yi, Daiyao, Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260877/ https://www.ncbi.nlm.nih.gov/pubmed/34258599 http://dx.doi.org/10.1016/j.xpro.2021.100639 |
Ejemplares similares
-
Protocol for using Ciclops to build models trained on cross-platform transcriptome data for clinical outcome prediction
por: Chou, Elysia, et al.
Publicado: (2022) -
Harmonizing across datasets to improve the transferability of drug combination prediction
por: Zhang, Hanrui, et al.
Publicado: (2023) -
Deep learning identifies erroneous microarray-based, gene-level conclusions in literature
por: Qin, Yanan, et al.
Publicado: (2021) -
Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms
por: Zhang, Hanrui, et al.
Publicado: (2022) -
Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning
por: Chyon, Fuad Ahmed, et al.
Publicado: (2022)