Cargando…
Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals
Previous literature shows that deep learning is an effective tool to decode the motor intent from neural signals obtained from different parts of the nervous system. However, deep neural networks are often computationally complex and not feasible to work in real-time. Here we investigate different a...
Autores principales: | Luu, Diu K., Nguyen, Anh T., Jiang, Ming, Xu, Jian, Drealan, Markus W., Cheng, Jonathan, Keefer, Edward W., Zhao, Qi, Yang, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260935/ https://www.ncbi.nlm.nih.gov/pubmed/34248481 http://dx.doi.org/10.3389/fnins.2021.667907 |
Ejemplares similares
-
3. MOTOR CONTROL OF INDIVIDUAL DIGITS OF A ROBOTIC HAND USING ONLY SIGNALS RECORDED FROM THE PERIPHERAL NERVES
por: Cheng, Jonathan, et al.
Publicado: (2022) -
Human motor decoding from neural signals: a review
por: Tam, Wing-kin, et al.
Publicado: (2019) -
Dynamic peripheral nerve stimulation can produce cortical activation similar to punctate mechanical stimuli
por: Tanner, Justin, et al.
Publicado: (2023) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018) -
Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve?
por: Kutafina, Ekaterina, et al.
Publicado: (2022)