Cargando…
Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma
BACKGROUND: To establish a machine-learning-derived nomogram based on radiomic features and clinical factors to predict post-surgical 2-year progression-free survival (PFS) in patients with lung adenocarcinoma. METHODS: Patients with >2 years post-surgical prognosis results of lung adenocarcinoma...
Autores principales: | Liu, Guixue, Xu, Zhihan, Zhang, Yaping, Jiang, Beibei, Zhang, Lu, Wang, Lingyun, de Bock, Geertruida H., Vliegenthart, Rozemarijn, Xie, Xueqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260977/ https://www.ncbi.nlm.nih.gov/pubmed/34249741 http://dx.doi.org/10.3389/fonc.2021.692329 |
Ejemplares similares
-
Simultaneous Identification of EGFR,
KRAS,
ERBB2, and TP53 Mutations in Patients with Non-Small Cell Lung Cancer by Machine Learning-Derived Three-Dimensional Radiomics
por: Zhang, Tiening, et al.
Publicado: (2021) -
3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma
por: Liu, Guixue, et al.
Publicado: (2020) -
Development and multicenter validation of chest X-ray radiography interpretations based on natural language processing
por: Zhang, Yaping, et al.
Publicado: (2021) -
Development and validation of an MRI-radiomics nomogram for the prognosis of pancreatic ductal adenocarcinoma
por: Xu, Xinsen, et al.
Publicado: (2023) -
A Nomogram Combined Radiomics and Clinical Features as Imaging Biomarkers for Prediction of Visceral Pleural Invasion in Lung Adenocarcinoma
por: Zha, Xinyi, et al.
Publicado: (2022)