Cargando…

A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules

Addressing the high false‐positive rate of conventional low‐dose computed tomography (LDCT) for lung cancer diagnosis, the efficacy of incorporating blood‐based noninvasive testing for assisting practicing clinician's decision making in diagnosis of pulmonary nodules (PNs) is investigated. In t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Quan‐Xing, Zhou, Dong, Han, Tian‐Cheng, Lu, Xiao, Hou, Bing, Li, Man‐Yuan, Yang, Gui‐Xue, Li, Qing‐Yuan, Pei, Zhi‐Hua, Hong, Yuan‐Yuan, Zhang, Ya‐Xi, Chen, Wei‐Zhi, Zheng, Hong, He, Ji, Dai, Ji‐Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261512/
https://www.ncbi.nlm.nih.gov/pubmed/34258160
http://dx.doi.org/10.1002/advs.202100104
_version_ 1783719027731857408
author Liu, Quan‐Xing
Zhou, Dong
Han, Tian‐Cheng
Lu, Xiao
Hou, Bing
Li, Man‐Yuan
Yang, Gui‐Xue
Li, Qing‐Yuan
Pei, Zhi‐Hua
Hong, Yuan‐Yuan
Zhang, Ya‐Xi
Chen, Wei‐Zhi
Zheng, Hong
He, Ji
Dai, Ji‐Gang
author_facet Liu, Quan‐Xing
Zhou, Dong
Han, Tian‐Cheng
Lu, Xiao
Hou, Bing
Li, Man‐Yuan
Yang, Gui‐Xue
Li, Qing‐Yuan
Pei, Zhi‐Hua
Hong, Yuan‐Yuan
Zhang, Ya‐Xi
Chen, Wei‐Zhi
Zheng, Hong
He, Ji
Dai, Ji‐Gang
author_sort Liu, Quan‐Xing
collection PubMed
description Addressing the high false‐positive rate of conventional low‐dose computed tomography (LDCT) for lung cancer diagnosis, the efficacy of incorporating blood‐based noninvasive testing for assisting practicing clinician's decision making in diagnosis of pulmonary nodules (PNs) is investigated. In this prospective observative study, next generation sequencing‐ (NGS‐) based cell‐free DNA (cfDNA) mutation profiling, NGS‐based cfDNA methylation profiling, and blood‐based protein cancer biomarker testing are performed for patients with PNs, who are diagnosed as high‐risk patients through LDCT and subsequently undergo surgical resections, with tissue sections pathologically examined and classified. Using pathological classification as the gold standard, statistical and machine learning methods are used to select molecular markers associated with tissue's malignant classification based on a 98‐patient discovery cohort (28 benign and 70 malignant), and to construct an integrative multianalytical model for tissue malignancy prediction. Predictive models based on individual testing platforms have shown varying levels of performance, while their final integrative model produces an area under the receiver operating characteristic curve (AUC) of 0.85. The model's performance is further confirmed on a 29‐patient independent validation cohort (14 benign and 15 malignant, with power > 0.90), reproducing AUC of 0.86, which translates to an overall sensitivity of 80% and specificity of 85.7%.
format Online
Article
Text
id pubmed-8261512
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-82615122021-07-12 A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules Liu, Quan‐Xing Zhou, Dong Han, Tian‐Cheng Lu, Xiao Hou, Bing Li, Man‐Yuan Yang, Gui‐Xue Li, Qing‐Yuan Pei, Zhi‐Hua Hong, Yuan‐Yuan Zhang, Ya‐Xi Chen, Wei‐Zhi Zheng, Hong He, Ji Dai, Ji‐Gang Adv Sci (Weinh) Research Articles Addressing the high false‐positive rate of conventional low‐dose computed tomography (LDCT) for lung cancer diagnosis, the efficacy of incorporating blood‐based noninvasive testing for assisting practicing clinician's decision making in diagnosis of pulmonary nodules (PNs) is investigated. In this prospective observative study, next generation sequencing‐ (NGS‐) based cell‐free DNA (cfDNA) mutation profiling, NGS‐based cfDNA methylation profiling, and blood‐based protein cancer biomarker testing are performed for patients with PNs, who are diagnosed as high‐risk patients through LDCT and subsequently undergo surgical resections, with tissue sections pathologically examined and classified. Using pathological classification as the gold standard, statistical and machine learning methods are used to select molecular markers associated with tissue's malignant classification based on a 98‐patient discovery cohort (28 benign and 70 malignant), and to construct an integrative multianalytical model for tissue malignancy prediction. Predictive models based on individual testing platforms have shown varying levels of performance, while their final integrative model produces an area under the receiver operating characteristic curve (AUC) of 0.85. The model's performance is further confirmed on a 29‐patient independent validation cohort (14 benign and 15 malignant, with power > 0.90), reproducing AUC of 0.86, which translates to an overall sensitivity of 80% and specificity of 85.7%. John Wiley and Sons Inc. 2021-05-07 /pmc/articles/PMC8261512/ /pubmed/34258160 http://dx.doi.org/10.1002/advs.202100104 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Liu, Quan‐Xing
Zhou, Dong
Han, Tian‐Cheng
Lu, Xiao
Hou, Bing
Li, Man‐Yuan
Yang, Gui‐Xue
Li, Qing‐Yuan
Pei, Zhi‐Hua
Hong, Yuan‐Yuan
Zhang, Ya‐Xi
Chen, Wei‐Zhi
Zheng, Hong
He, Ji
Dai, Ji‐Gang
A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title_full A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title_fullStr A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title_full_unstemmed A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title_short A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules
title_sort noninvasive multianalytical approach for lung cancer diagnosis of patients with pulmonary nodules
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261512/
https://www.ncbi.nlm.nih.gov/pubmed/34258160
http://dx.doi.org/10.1002/advs.202100104
work_keys_str_mv AT liuquanxing anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhoudong anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT hantiancheng anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT luxiao anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT houbing anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT limanyuan anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT yangguixue anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT liqingyuan anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT peizhihua anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT hongyuanyuan anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhangyaxi anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT chenweizhi anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhenghong anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT heji anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT daijigang anoninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT liuquanxing noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhoudong noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT hantiancheng noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT luxiao noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT houbing noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT limanyuan noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT yangguixue noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT liqingyuan noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT peizhihua noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT hongyuanyuan noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhangyaxi noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT chenweizhi noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT zhenghong noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT heji noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules
AT daijigang noninvasivemultianalyticalapproachforlungcancerdiagnosisofpatientswithpulmonarynodules