Cargando…
An integrated nomogram combining deep learning, Prostate Imaging–Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study
BACKGROUND: Biparametric MRI (comprising T2-weighted MRI and apparent diffusion coefficient maps) is increasingly being used to characterise prostate cancer. Although previous studies have combined Prostate Imaging–Reporting & Data System (PI-RADS)-based MRI findings with routinely available cli...
Autores principales: | Hiremath, Amogh, Shiradkar, Rakesh, Fu, Pingfu, Mahran, Amr, Rastinehad, Ardeshir R, Tewari, Ashutosh, Tirumani, Sree Harsha, Purysko, Andrei, Ponsky, Lee, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261599/ https://www.ncbi.nlm.nih.gov/pubmed/34167765 http://dx.doi.org/10.1016/S2589-7500(21)00082-0 |
Ejemplares similares
-
Novel radiomic analysis on bi-parametric MRI for characterizing differences between MR non-visible and visible clinically significant prostate cancer
por: Li, Lin, et al.
Publicado: (2023) -
Prostate Surface Distension and Tumor Texture Descriptors From Pre-Treatment MRI Are Associated With Biochemical Recurrence Following Radical Prostatectomy: Preliminary Findings
por: Shiradkar, Rakesh, et al.
Publicado: (2022) -
Delta radiomic patterns on serial bi-parametric MRI are associated with pathologic upgrading in prostate cancer patients on active surveillance: preliminary findings
por: Midya, Abhishek, et al.
Publicado: (2023) -
Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study
por: Algohary, Ahmad, et al.
Publicado: (2020) -
A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI
por: Li, Lin, et al.
Publicado: (2020)