Cargando…

Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots

Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product select...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahm, Constantin D., Mates-Torres, Eric, Eliasson, Nora, Sokołowski, Kamil, Wagner, Andreas, Dalle, Kristian E., Huang, Zehuan, Scherman, Oren A., Hammarström, Leif, García-Melchor, Max, Reisner, Erwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261709/
https://www.ncbi.nlm.nih.gov/pubmed/34276937
http://dx.doi.org/10.1039/d1sc01310f
_version_ 1783719058986762240
author Sahm, Constantin D.
Mates-Torres, Eric
Eliasson, Nora
Sokołowski, Kamil
Wagner, Andreas
Dalle, Kristian E.
Huang, Zehuan
Scherman, Oren A.
Hammarström, Leif
García-Melchor, Max
Reisner, Erwin
author_facet Sahm, Constantin D.
Mates-Torres, Eric
Eliasson, Nora
Sokołowski, Kamil
Wagner, Andreas
Dalle, Kristian E.
Huang, Zehuan
Scherman, Oren A.
Hammarström, Leif
García-Melchor, Max
Reisner, Erwin
author_sort Sahm, Constantin D.
collection PubMed
description Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO(2) reduction even in the absence of transition metal co-catalysts. Besides H(2), imidazolium-modified ZnSe QDs evolve up to 2.4 mmol(CO) g(ZnSe)(−1) (TON(QD) > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using (1)H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO(2)(−) intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO(2) reduction.
format Online
Article
Text
id pubmed-8261709
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-82617092021-07-16 Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots Sahm, Constantin D. Mates-Torres, Eric Eliasson, Nora Sokołowski, Kamil Wagner, Andreas Dalle, Kristian E. Huang, Zehuan Scherman, Oren A. Hammarström, Leif García-Melchor, Max Reisner, Erwin Chem Sci Chemistry Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO(2) reduction even in the absence of transition metal co-catalysts. Besides H(2), imidazolium-modified ZnSe QDs evolve up to 2.4 mmol(CO) g(ZnSe)(−1) (TON(QD) > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using (1)H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO(2)(−) intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO(2) reduction. The Royal Society of Chemistry 2021-05-17 /pmc/articles/PMC8261709/ /pubmed/34276937 http://dx.doi.org/10.1039/d1sc01310f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Sahm, Constantin D.
Mates-Torres, Eric
Eliasson, Nora
Sokołowski, Kamil
Wagner, Andreas
Dalle, Kristian E.
Huang, Zehuan
Scherman, Oren A.
Hammarström, Leif
García-Melchor, Max
Reisner, Erwin
Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title_full Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title_fullStr Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title_full_unstemmed Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title_short Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
title_sort imidazolium-modification enhances photocatalytic co(2) reduction on znse quantum dots
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261709/
https://www.ncbi.nlm.nih.gov/pubmed/34276937
http://dx.doi.org/10.1039/d1sc01310f
work_keys_str_mv AT sahmconstantind imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT matestorreseric imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT eliassonnora imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT sokołowskikamil imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT wagnerandreas imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT dallekristiane imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT huangzehuan imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT schermanorena imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT hammarstromleif imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT garciamelchormax imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots
AT reisnererwin imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots