Cargando…
Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots
Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product select...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261709/ https://www.ncbi.nlm.nih.gov/pubmed/34276937 http://dx.doi.org/10.1039/d1sc01310f |
_version_ | 1783719058986762240 |
---|---|
author | Sahm, Constantin D. Mates-Torres, Eric Eliasson, Nora Sokołowski, Kamil Wagner, Andreas Dalle, Kristian E. Huang, Zehuan Scherman, Oren A. Hammarström, Leif García-Melchor, Max Reisner, Erwin |
author_facet | Sahm, Constantin D. Mates-Torres, Eric Eliasson, Nora Sokołowski, Kamil Wagner, Andreas Dalle, Kristian E. Huang, Zehuan Scherman, Oren A. Hammarström, Leif García-Melchor, Max Reisner, Erwin |
author_sort | Sahm, Constantin D. |
collection | PubMed |
description | Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO(2) reduction even in the absence of transition metal co-catalysts. Besides H(2), imidazolium-modified ZnSe QDs evolve up to 2.4 mmol(CO) g(ZnSe)(−1) (TON(QD) > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using (1)H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO(2)(−) intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO(2) reduction. |
format | Online Article Text |
id | pubmed-8261709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-82617092021-07-16 Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots Sahm, Constantin D. Mates-Torres, Eric Eliasson, Nora Sokołowski, Kamil Wagner, Andreas Dalle, Kristian E. Huang, Zehuan Scherman, Oren A. Hammarström, Leif García-Melchor, Max Reisner, Erwin Chem Sci Chemistry Colloidal photocatalysts can utilize solar light for the conversion of CO(2) to carbon-based fuels, but controlling the product selectivity for CO(2) reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO(2) reduction even in the absence of transition metal co-catalysts. Besides H(2), imidazolium-modified ZnSe QDs evolve up to 2.4 mmol(CO) g(ZnSe)(−1) (TON(QD) > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using (1)H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO(2)(−) intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO(2) reduction. The Royal Society of Chemistry 2021-05-17 /pmc/articles/PMC8261709/ /pubmed/34276937 http://dx.doi.org/10.1039/d1sc01310f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Sahm, Constantin D. Mates-Torres, Eric Eliasson, Nora Sokołowski, Kamil Wagner, Andreas Dalle, Kristian E. Huang, Zehuan Scherman, Oren A. Hammarström, Leif García-Melchor, Max Reisner, Erwin Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title | Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title_full | Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title_fullStr | Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title_full_unstemmed | Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title_short | Imidazolium-modification enhances photocatalytic CO(2) reduction on ZnSe quantum dots |
title_sort | imidazolium-modification enhances photocatalytic co(2) reduction on znse quantum dots |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261709/ https://www.ncbi.nlm.nih.gov/pubmed/34276937 http://dx.doi.org/10.1039/d1sc01310f |
work_keys_str_mv | AT sahmconstantind imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT matestorreseric imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT eliassonnora imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT sokołowskikamil imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT wagnerandreas imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT dallekristiane imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT huangzehuan imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT schermanorena imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT hammarstromleif imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT garciamelchormax imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots AT reisnererwin imidazoliummodificationenhancesphotocatalyticco2reductiononznsequantumdots |