Cargando…

Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling

The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bo, Bugarin-Estrada, Emmanuel, Overend, Lauren Elizabeth, Walker, Catherine Elizabeth, Tucci, Felicia Anna, Bashford-Rogers, Rachael Jennifer Mary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262260/
https://www.ncbi.nlm.nih.gov/pubmed/34278374
http://dx.doi.org/10.1016/j.crmeth.2021.100008
Descripción
Sumario:The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data.