Cargando…

Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling

The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bo, Bugarin-Estrada, Emmanuel, Overend, Lauren Elizabeth, Walker, Catherine Elizabeth, Tucci, Felicia Anna, Bashford-Rogers, Rachael Jennifer Mary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262260/
https://www.ncbi.nlm.nih.gov/pubmed/34278374
http://dx.doi.org/10.1016/j.crmeth.2021.100008
_version_ 1783719157076852736
author Sun, Bo
Bugarin-Estrada, Emmanuel
Overend, Lauren Elizabeth
Walker, Catherine Elizabeth
Tucci, Felicia Anna
Bashford-Rogers, Rachael Jennifer Mary
author_facet Sun, Bo
Bugarin-Estrada, Emmanuel
Overend, Lauren Elizabeth
Walker, Catherine Elizabeth
Tucci, Felicia Anna
Bashford-Rogers, Rachael Jennifer Mary
author_sort Sun, Bo
collection PubMed
description The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data.
format Online
Article
Text
id pubmed-8262260
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82622602021-07-16 Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling Sun, Bo Bugarin-Estrada, Emmanuel Overend, Lauren Elizabeth Walker, Catherine Elizabeth Tucci, Felicia Anna Bashford-Rogers, Rachael Jennifer Mary Cell Rep Methods Report The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data. Elsevier 2021-05-12 /pmc/articles/PMC8262260/ /pubmed/34278374 http://dx.doi.org/10.1016/j.crmeth.2021.100008 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Report
Sun, Bo
Bugarin-Estrada, Emmanuel
Overend, Lauren Elizabeth
Walker, Catherine Elizabeth
Tucci, Felicia Anna
Bashford-Rogers, Rachael Jennifer Mary
Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title_full Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title_fullStr Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title_full_unstemmed Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title_short Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
title_sort double-jeopardy: scrna-seq doublet/multiplet detection using multi-omic profiling
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262260/
https://www.ncbi.nlm.nih.gov/pubmed/34278374
http://dx.doi.org/10.1016/j.crmeth.2021.100008
work_keys_str_mv AT sunbo doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling
AT bugarinestradaemmanuel doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling
AT overendlaurenelizabeth doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling
AT walkercatherineelizabeth doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling
AT tuccifeliciaanna doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling
AT bashfordrogersrachaeljennifermary doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling