Cargando…
Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling
The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262260/ https://www.ncbi.nlm.nih.gov/pubmed/34278374 http://dx.doi.org/10.1016/j.crmeth.2021.100008 |
_version_ | 1783719157076852736 |
---|---|
author | Sun, Bo Bugarin-Estrada, Emmanuel Overend, Lauren Elizabeth Walker, Catherine Elizabeth Tucci, Felicia Anna Bashford-Rogers, Rachael Jennifer Mary |
author_facet | Sun, Bo Bugarin-Estrada, Emmanuel Overend, Lauren Elizabeth Walker, Catherine Elizabeth Tucci, Felicia Anna Bashford-Rogers, Rachael Jennifer Mary |
author_sort | Sun, Bo |
collection | PubMed |
description | The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data. |
format | Online Article Text |
id | pubmed-8262260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82622602021-07-16 Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling Sun, Bo Bugarin-Estrada, Emmanuel Overend, Lauren Elizabeth Walker, Catherine Elizabeth Tucci, Felicia Anna Bashford-Rogers, Rachael Jennifer Mary Cell Rep Methods Report The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict their presence based on transcriptional features associated with identified hybrid droplets. This approach highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality datasets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples, thus presenting a powerful approach to ensuring high-quality scRNA-seq data. Elsevier 2021-05-12 /pmc/articles/PMC8262260/ /pubmed/34278374 http://dx.doi.org/10.1016/j.crmeth.2021.100008 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Report Sun, Bo Bugarin-Estrada, Emmanuel Overend, Lauren Elizabeth Walker, Catherine Elizabeth Tucci, Felicia Anna Bashford-Rogers, Rachael Jennifer Mary Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title | Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title_full | Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title_fullStr | Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title_full_unstemmed | Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title_short | Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling |
title_sort | double-jeopardy: scrna-seq doublet/multiplet detection using multi-omic profiling |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262260/ https://www.ncbi.nlm.nih.gov/pubmed/34278374 http://dx.doi.org/10.1016/j.crmeth.2021.100008 |
work_keys_str_mv | AT sunbo doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling AT bugarinestradaemmanuel doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling AT overendlaurenelizabeth doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling AT walkercatherineelizabeth doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling AT tuccifeliciaanna doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling AT bashfordrogersrachaeljennifermary doublejeopardyscrnaseqdoubletmultipletdetectionusingmultiomicprofiling |