Cargando…

On a class of integrable Hamiltonian equations in 2+1 dimensions

We classify integrable Hamiltonian equations of the form [Formula: see text] where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality [Formula: see text]. Based on the method of hydrodynamic reductions, the integrability conditions are derived (...

Descripción completa

Detalles Bibliográficos
Autores principales: Gormley, Ben, Ferapontov, Eugene V., Novikov, Vladimir S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262524/
https://www.ncbi.nlm.nih.gov/pubmed/34248391
http://dx.doi.org/10.1098/rspa.2021.0047
_version_ 1783719204042571776
author Gormley, Ben
Ferapontov, Eugene V.
Novikov, Vladimir S.
author_facet Gormley, Ben
Ferapontov, Eugene V.
Novikov, Vladimir S.
author_sort Gormley, Ben
collection PubMed
description We classify integrable Hamiltonian equations of the form [Formula: see text] where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality [Formula: see text]. Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h). We show that the generic integrable density is expressed in terms of the Weierstrass σ-function: h(u, w) = σ(u) e(w). Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed.
format Online
Article
Text
id pubmed-8262524
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-82625242022-01-25 On a class of integrable Hamiltonian equations in 2+1 dimensions Gormley, Ben Ferapontov, Eugene V. Novikov, Vladimir S. Proc Math Phys Eng Sci Special Feature We classify integrable Hamiltonian equations of the form [Formula: see text] where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality [Formula: see text]. Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h). We show that the generic integrable density is expressed in terms of the Weierstrass σ-function: h(u, w) = σ(u) e(w). Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed. The Royal Society Publishing 2021-05 2021-05-26 /pmc/articles/PMC8262524/ /pubmed/34248391 http://dx.doi.org/10.1098/rspa.2021.0047 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Special Feature
Gormley, Ben
Ferapontov, Eugene V.
Novikov, Vladimir S.
On a class of integrable Hamiltonian equations in 2+1 dimensions
title On a class of integrable Hamiltonian equations in 2+1 dimensions
title_full On a class of integrable Hamiltonian equations in 2+1 dimensions
title_fullStr On a class of integrable Hamiltonian equations in 2+1 dimensions
title_full_unstemmed On a class of integrable Hamiltonian equations in 2+1 dimensions
title_short On a class of integrable Hamiltonian equations in 2+1 dimensions
title_sort on a class of integrable hamiltonian equations in 2+1 dimensions
topic Special Feature
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262524/
https://www.ncbi.nlm.nih.gov/pubmed/34248391
http://dx.doi.org/10.1098/rspa.2021.0047
work_keys_str_mv AT gormleyben onaclassofintegrablehamiltonianequationsin21dimensions
AT ferapontoveugenev onaclassofintegrablehamiltonianequationsin21dimensions
AT novikovvladimirs onaclassofintegrablehamiltonianequationsin21dimensions