Cargando…
On a class of integrable Hamiltonian equations in 2+1 dimensions
We classify integrable Hamiltonian equations of the form [Formula: see text] where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality [Formula: see text]. Based on the method of hydrodynamic reductions, the integrability conditions are derived (...
Autores principales: | Gormley, Ben, Ferapontov, Eugene V., Novikov, Vladimir S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262524/ https://www.ncbi.nlm.nih.gov/pubmed/34248391 http://dx.doi.org/10.1098/rspa.2021.0047 |
Ejemplares similares
-
Dimensions of Blue Carbon and emerging perspectives
por: Lovelock, Catherine E., et al.
Publicado: (2019) -
The generalized Wiener–Hopf equations for wave motion in angular regions: electromagnetic application
por: Daniele, V. G., et al.
Publicado: (2021) -
The generalized Wiener–Hopf equations for the elastic wave motion in angular regions
por: Daniele, Vito G., et al.
Publicado: (2022) -
HIV-1 transmission: modelling and direct visualization in the third dimension
por: Coomer, Charles A, et al.
Publicado: (2023) -
Hamiltonian Truncation with Larger Dimensions
por: Elias Miró, Joan
Publicado: (2022)