Cargando…
Implementing Vertical Federated Learning Using Autoencoders: Practical Application, Generalizability, and Utility Study
BACKGROUND: Machine learning (ML) is now widely deployed in our everyday lives. Building robust ML models requires a massive amount of data for training. Traditional ML algorithms require training data centralization, which raises privacy and data governance issues. Federated learning (FL) is an app...
Autores principales: | Cha, Dongchul, Sung, MinDong, Park, Yu-Rang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262549/ https://www.ncbi.nlm.nih.gov/pubmed/34106083 http://dx.doi.org/10.2196/26598 |
Ejemplares similares
-
Local Differential Privacy in the Medical Domain to Protect Sensitive Information: Algorithm Development and Real-World Validation
por: Sung, MinDong, et al.
Publicado: (2021) -
Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning
por: Kea, Kimleang, et al.
Publicado: (2023) -
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
por: Burbank, Kendra S.
Publicado: (2015) -
Learning generalizable behaviors from demonstration
por: Rivera, Corban, et al.
Publicado: (2022) -
Vertical program of screenings and check-ups in the Russian Federation: design, implementation and lessons learnt
por: Sheiman, Igor, et al.
Publicado: (2022)