Cargando…

Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology

Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME (202)Pb–(205)Pb–(233)U–(235)U tracer solution for isotope dilution, and the EARTHTIM...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaltegger, Urs, Ovtcharova, Maria, Gaynor, Sean P., Schoene, Blair, Wotzlaw, Jörn-Frederik, Davies, Joshua F. H. L., Farina, Federico, Greber, Nicolas David, Szymanowski, Dawid, Chelle-Michou, Cyril
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262554/
https://www.ncbi.nlm.nih.gov/pubmed/34276120
http://dx.doi.org/10.1039/d1ja00116g
_version_ 1783719210007920640
author Schaltegger, Urs
Ovtcharova, Maria
Gaynor, Sean P.
Schoene, Blair
Wotzlaw, Jörn-Frederik
Davies, Joshua F. H. L.
Farina, Federico
Greber, Nicolas David
Szymanowski, Dawid
Chelle-Michou, Cyril
author_facet Schaltegger, Urs
Ovtcharova, Maria
Gaynor, Sean P.
Schoene, Blair
Wotzlaw, Jörn-Frederik
Davies, Joshua F. H. L.
Farina, Federico
Greber, Nicolas David
Szymanowski, Dawid
Chelle-Michou, Cyril
author_sort Schaltegger, Urs
collection PubMed
description Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME (202)Pb–(205)Pb–(233)U–(235)U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution (206)Pb/(238)U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution ((206)Pb/(238)U date, 100.173 ± 0.003 Ma), for ET2000 solution ((207)Pb/(206)Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 ((206)Pb/(238)U date, 417.353 ± 0.052 Ma). These data will allow U–Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.
format Online
Article
Text
id pubmed-8262554
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-82625542021-07-16 Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology Schaltegger, Urs Ovtcharova, Maria Gaynor, Sean P. Schoene, Blair Wotzlaw, Jörn-Frederik Davies, Joshua F. H. L. Farina, Federico Greber, Nicolas David Szymanowski, Dawid Chelle-Michou, Cyril J Anal At Spectrom Chemistry Age determination of minerals using the U–Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U–Pb dates employing the EARTHTIME (202)Pb–(205)Pb–(233)U–(235)U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution (206)Pb/(238)U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution ((206)Pb/(238)U date, 100.173 ± 0.003 Ma), for ET2000 solution ((207)Pb/(206)Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 ((206)Pb/(238)U date, 417.353 ± 0.052 Ma). These data will allow U–Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use. The Royal Society of Chemistry 2021-05-25 /pmc/articles/PMC8262554/ /pubmed/34276120 http://dx.doi.org/10.1039/d1ja00116g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Schaltegger, Urs
Ovtcharova, Maria
Gaynor, Sean P.
Schoene, Blair
Wotzlaw, Jörn-Frederik
Davies, Joshua F. H. L.
Farina, Federico
Greber, Nicolas David
Szymanowski, Dawid
Chelle-Michou, Cyril
Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title_full Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title_fullStr Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title_full_unstemmed Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title_short Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology
title_sort long-term repeatability and interlaboratory reproducibility of high-precision id-tims u–pb geochronology
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262554/
https://www.ncbi.nlm.nih.gov/pubmed/34276120
http://dx.doi.org/10.1039/d1ja00116g
work_keys_str_mv AT schalteggerurs longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT ovtcharovamaria longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT gaynorseanp longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT schoeneblair longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT wotzlawjornfrederik longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT daviesjoshuafhl longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT farinafederico longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT grebernicolasdavid longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT szymanowskidawid longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology
AT chellemichoucyril longtermrepeatabilityandinterlaboratoryreproducibilityofhighprecisionidtimsupbgeochronology