Cargando…
Community and topic modeling for infectious disease clinical trial recommendation
Clinical trials are crucial for the advancement of treatment and knowledge within the medical community. Although the ClinicalTrials.gov initiative has resulted in a rich source of information for clinical trial research, only a handful of analytic studies have been carried out to understand this va...
Autores principales: | Elkin, Magdalyn E., Zhu, Xingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262767/ https://www.ncbi.nlm.nih.gov/pubmed/34254037 http://dx.doi.org/10.1007/s13721-021-00321-7 |
Ejemplares similares
-
Predictive modeling of clinical trial terminations using feature engineering and embedding learning
por: Elkin, Magdalyn E., et al.
Publicado: (2021) -
Understanding and predicting COVID-19 clinical trial completion vs. cessation
por: Elkin, Magdalyn E., et al.
Publicado: (2021) -
A machine learning study of COVID-19 serology and molecular tests and predictions
por: Elkin, Magdalyn E., et al.
Publicado: (2022) -
Variability in Pediatric Infectious Disease Consultants' Recommendations for Management of Community-Acquired Pneumonia
por: Hersh, Adam L., et al.
Publicado: (2011) -
5 infectious disease topics to watch
por: Duong, Diana
Publicado: (2022)