Cargando…

The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress

Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent r...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ju-Sim, Liu, Lin, Vázquez-Torres, Andrés
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262869/
https://www.ncbi.nlm.nih.gov/pubmed/33975942
http://dx.doi.org/10.1128/mBio.03443-20
_version_ 1783719263534579712
author Kim, Ju-Sim
Liu, Lin
Vázquez-Torres, Andrés
author_facet Kim, Ju-Sim
Liu, Lin
Vázquez-Torres, Andrés
author_sort Kim, Ju-Sim
collection PubMed
description Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His(33) in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His(33) in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ’s zinc-2 site. Thr(199) in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress.
format Online
Article
Text
id pubmed-8262869
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-82628692021-07-23 The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress Kim, Ju-Sim Liu, Lin Vázquez-Torres, Andrés mBio Research Article Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His(33) in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His(33) in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ’s zinc-2 site. Thr(199) in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress. American Society for Microbiology 2021-05-11 /pmc/articles/PMC8262869/ /pubmed/33975942 http://dx.doi.org/10.1128/mBio.03443-20 Text en Copyright © 2021 Kim et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Kim, Ju-Sim
Liu, Lin
Vázquez-Torres, Andrés
The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title_full The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title_fullStr The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title_full_unstemmed The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title_short The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress
title_sort dnak/dnaj chaperone system enables rna polymerase-dksa complex formation in salmonella experiencing oxidative stress
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262869/
https://www.ncbi.nlm.nih.gov/pubmed/33975942
http://dx.doi.org/10.1128/mBio.03443-20
work_keys_str_mv AT kimjusim thednakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress
AT liulin thednakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress
AT vazqueztorresandres thednakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress
AT kimjusim dnakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress
AT liulin dnakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress
AT vazqueztorresandres dnakdnajchaperonesystemenablesrnapolymerasedksacomplexformationinsalmonellaexperiencingoxidativestress