Cargando…

Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast

Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimast...

Descripción completa

Detalles Bibliográficos
Autores principales: Perli, Thomas, Vos, Aurin M., Bouwknegt, Jonna, Dekker, Wijb J. C., Wiersma, Sanne J., Mooiman, Christiaan, Ortiz-Merino, Raúl A., Daran, Jean-Marc, Pronk, Jack T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262920/
https://www.ncbi.nlm.nih.gov/pubmed/34154398
http://dx.doi.org/10.1128/mBio.00967-21
_version_ 1783719275462131712
author Perli, Thomas
Vos, Aurin M.
Bouwknegt, Jonna
Dekker, Wijb J. C.
Wiersma, Sanne J.
Mooiman, Christiaan
Ortiz-Merino, Raúl A.
Daran, Jean-Marc
Pronk, Jack T.
author_facet Perli, Thomas
Vos, Aurin M.
Bouwknegt, Jonna
Dekker, Wijb J. C.
Wiersma, Sanne J.
Mooiman, Christiaan
Ortiz-Merino, Raúl A.
Daran, Jean-Marc
Pronk, Jack T.
author_sort Perli, Thomas
collection PubMed
description Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified a candidate l-aspartate-decarboxylase (AdcA) and l-aspartate oxidase (NadB) and quinolinate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring reactions, they were introduced into fms1Δ and bna2Δ Saccharomyces cerevisiae strains. Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix californiae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts and fungi.
format Online
Article
Text
id pubmed-8262920
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-82629202021-07-23 Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast Perli, Thomas Vos, Aurin M. Bouwknegt, Jonna Dekker, Wijb J. C. Wiersma, Sanne J. Mooiman, Christiaan Ortiz-Merino, Raúl A. Daran, Jean-Marc Pronk, Jack T. mBio Research Article Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified a candidate l-aspartate-decarboxylase (AdcA) and l-aspartate oxidase (NadB) and quinolinate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring reactions, they were introduced into fms1Δ and bna2Δ Saccharomyces cerevisiae strains. Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix californiae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts and fungi. American Society for Microbiology 2021-06-22 /pmc/articles/PMC8262920/ /pubmed/34154398 http://dx.doi.org/10.1128/mBio.00967-21 Text en Copyright © 2021 Perli et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Perli, Thomas
Vos, Aurin M.
Bouwknegt, Jonna
Dekker, Wijb J. C.
Wiersma, Sanne J.
Mooiman, Christiaan
Ortiz-Merino, Raúl A.
Daran, Jean-Marc
Pronk, Jack T.
Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title_full Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title_fullStr Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title_full_unstemmed Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title_short Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast
title_sort identification of oxygen-independent pathways for pyridine nucleotide and coenzyme a synthesis in anaerobic fungi by expression of candidate genes in yeast
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262920/
https://www.ncbi.nlm.nih.gov/pubmed/34154398
http://dx.doi.org/10.1128/mBio.00967-21
work_keys_str_mv AT perlithomas identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT vosaurinm identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT bouwknegtjonna identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT dekkerwijbjc identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT wiersmasannej identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT mooimanchristiaan identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT ortizmerinoraula identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT daranjeanmarc identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast
AT pronkjackt identificationofoxygenindependentpathwaysforpyridinenucleotideandcoenzymeasynthesisinanaerobicfungibyexpressionofcandidategenesinyeast