Cargando…
Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in Neurospora
Intracellular calcium signaling has been implicated in the control of a variety of circadian processes in animals and plants, but its role in microbial clocks has remained largely cryptic. To examine the role of intracellular Ca(2+) in the Neurospora clock, we screened mutants with knockouts of calc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262947/ https://www.ncbi.nlm.nih.gov/pubmed/34182778 http://dx.doi.org/10.1128/mBio.01493-21 |
Sumario: | Intracellular calcium signaling has been implicated in the control of a variety of circadian processes in animals and plants, but its role in microbial clocks has remained largely cryptic. To examine the role of intracellular Ca(2+) in the Neurospora clock, we screened mutants with knockouts of calcium transporter genes and identified a gene encoding a calcium exporter, nca-2, uniquely as having significant period effects. The loss of NCA-2 results in an increase in the cytosolic calcium level, and this leads to hyper-phosphorylation of core clock components, FRQ and WC-1, and a short period, as measured by both the core oscillator and the overt clock. Genetic analyses showed that mutations in certain frq phospho-sites and in Ca(2+)-calmodulin-dependent kinase 2 (camk-2) are epistatic to nca-2 in controlling the pace of the oscillator. These data are consistent with a model in which elevated intracellular Ca(2+) leads to the increased activity of CAMK-2, leading to enhanced FRQ phosphorylation, accelerated closure of the circadian feedback loop, and a shortened circadian period length. At a mechanistic level, some CAMKs undergo more auto-phosphorylations in the Δnca-2 mutant, consistent with high calcium levels in the Δnca-2 mutant influencing the enzymatic activities of CAMKs. NCA-2 interacts with multiple proteins, including CSP-6, a protein known to be required for circadian output. Most importantly, the expression of nca-2 is circadian clock-controlled at both the transcriptional and translational levels, and this in combination with the period effects seen in strains lacking NCA-2 firmly places calcium signaling within the larger circadian system, where it acts as both an input to and an output from the core clock. |
---|