Cargando…
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larva...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262968/ https://www.ncbi.nlm.nih.gov/pubmed/34126772 http://dx.doi.org/10.1128/mBio.00276-21 |
_version_ | 1783719286602203136 |
---|---|
author | Ramond, Elodie Jamet, Anne Ding, Xiongqi Euphrasie, Daniel Bouvier, Clémence Lallemant, Louison He, Xiangyan Arbibe, Laurence Coureuil, Mathieu Charbit, Alain |
author_facet | Ramond, Elodie Jamet, Anne Ding, Xiongqi Euphrasie, Daniel Bouvier, Clémence Lallemant, Louison He, Xiangyan Arbibe, Laurence Coureuil, Mathieu Charbit, Alain |
author_sort | Ramond, Elodie |
collection | PubMed |
description | Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H(2)O(2) production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H(2)O(2) neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. |
format | Online Article Text |
id | pubmed-8262968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-82629682021-07-23 Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model Ramond, Elodie Jamet, Anne Ding, Xiongqi Euphrasie, Daniel Bouvier, Clémence Lallemant, Louison He, Xiangyan Arbibe, Laurence Coureuil, Mathieu Charbit, Alain mBio Research Article Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H(2)O(2) production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H(2)O(2) neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. American Society for Microbiology 2021-06-15 /pmc/articles/PMC8262968/ /pubmed/34126772 http://dx.doi.org/10.1128/mBio.00276-21 Text en Copyright © 2021 Ramond et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Ramond, Elodie Jamet, Anne Ding, Xiongqi Euphrasie, Daniel Bouvier, Clémence Lallemant, Louison He, Xiangyan Arbibe, Laurence Coureuil, Mathieu Charbit, Alain Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title | Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title_full | Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title_fullStr | Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title_full_unstemmed | Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title_short | Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model |
title_sort | reactive oxygen species-dependent innate immune mechanisms control methicillin-resistant staphylococcus aureus virulence in the drosophila larval model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262968/ https://www.ncbi.nlm.nih.gov/pubmed/34126772 http://dx.doi.org/10.1128/mBio.00276-21 |
work_keys_str_mv | AT ramondelodie reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT jametanne reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT dingxiongqi reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT euphrasiedaniel reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT bouvierclemence reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT lallemantlouison reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT hexiangyan reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT arbibelaurence reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT coureuilmathieu reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel AT charbitalain reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel |