Cargando…

Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model

Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larva...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramond, Elodie, Jamet, Anne, Ding, Xiongqi, Euphrasie, Daniel, Bouvier, Clémence, Lallemant, Louison, He, Xiangyan, Arbibe, Laurence, Coureuil, Mathieu, Charbit, Alain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262968/
https://www.ncbi.nlm.nih.gov/pubmed/34126772
http://dx.doi.org/10.1128/mBio.00276-21
_version_ 1783719286602203136
author Ramond, Elodie
Jamet, Anne
Ding, Xiongqi
Euphrasie, Daniel
Bouvier, Clémence
Lallemant, Louison
He, Xiangyan
Arbibe, Laurence
Coureuil, Mathieu
Charbit, Alain
author_facet Ramond, Elodie
Jamet, Anne
Ding, Xiongqi
Euphrasie, Daniel
Bouvier, Clémence
Lallemant, Louison
He, Xiangyan
Arbibe, Laurence
Coureuil, Mathieu
Charbit, Alain
author_sort Ramond, Elodie
collection PubMed
description Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H(2)O(2) production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H(2)O(2) neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens.
format Online
Article
Text
id pubmed-8262968
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-82629682021-07-23 Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model Ramond, Elodie Jamet, Anne Ding, Xiongqi Euphrasie, Daniel Bouvier, Clémence Lallemant, Louison He, Xiangyan Arbibe, Laurence Coureuil, Mathieu Charbit, Alain mBio Research Article Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H(2)O(2) production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H(2)O(2) neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. American Society for Microbiology 2021-06-15 /pmc/articles/PMC8262968/ /pubmed/34126772 http://dx.doi.org/10.1128/mBio.00276-21 Text en Copyright © 2021 Ramond et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Ramond, Elodie
Jamet, Anne
Ding, Xiongqi
Euphrasie, Daniel
Bouvier, Clémence
Lallemant, Louison
He, Xiangyan
Arbibe, Laurence
Coureuil, Mathieu
Charbit, Alain
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title_full Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title_fullStr Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title_full_unstemmed Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title_short Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model
title_sort reactive oxygen species-dependent innate immune mechanisms control methicillin-resistant staphylococcus aureus virulence in the drosophila larval model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262968/
https://www.ncbi.nlm.nih.gov/pubmed/34126772
http://dx.doi.org/10.1128/mBio.00276-21
work_keys_str_mv AT ramondelodie reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT jametanne reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT dingxiongqi reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT euphrasiedaniel reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT bouvierclemence reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT lallemantlouison reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT hexiangyan reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT arbibelaurence reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT coureuilmathieu reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel
AT charbitalain reactiveoxygenspeciesdependentinnateimmunemechanismscontrolmethicillinresistantstaphylococcusaureusvirulenceinthedrosophilalarvalmodel