Cargando…

Motion analysis for better understanding of psychomotor skills in laparoscopy: objective assessment-based simulation training using animal organs

BACKGROUND: Our aim was to characterize the motions of multiple laparoscopic surgical instruments among participants with different levels of surgical experience in a series of wet-lab training drills, in which participants need to perform a range of surgical procedures including grasping tissue, ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebina, Koki, Abe, Takashige, Higuchi, Madoka, Furumido, Jun, Iwahara, Naoya, Kon, Masafumi, Hotta, Kiyohiko, Komizunai, Shunsuke, Kurashima, Yo, Kikuchi, Hiroshi, Matsumoto, Ryuji, Osawa, Takahiro, Murai, Sachiyo, Tsujita, Teppei, Sase, Kazuya, Chen, Xiaoshuai, Konno, Atsushi, Shinohara, Nobuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263434/
https://www.ncbi.nlm.nih.gov/pubmed/32909201
http://dx.doi.org/10.1007/s00464-020-07940-7
Descripción
Sumario:BACKGROUND: Our aim was to characterize the motions of multiple laparoscopic surgical instruments among participants with different levels of surgical experience in a series of wet-lab training drills, in which participants need to perform a range of surgical procedures including grasping tissue, tissue traction and dissection, applying a Hem-o-lok clip, and suturing/knotting, and digitize the level of surgical competency. METHODS: Participants performed tissue dissection around the aorta, dividing encountered vessels after applying a Hem-o-lok (Task 1), and renal parenchymal closure (Task 2: suturing, Task 3: suturing and knot-tying), using swine cadaveric organs placed in a box trainer under a motion capture (Mocap) system. Motion-related metrics were compared according to participants’ level of surgical experience (experts: 50 ≤ laparoscopic surgeries, intermediates: 10–49, novices: 0–9), using the Kruskal–Wallis test, and significant metrics were subjected to principal component analysis (PCA). RESULTS: A total of 15 experts, 12 intermediates, and 18 novices participated in the training. In Task 1, a shorter path length and faster velocity/acceleration/jerk were observed using both scissors and a Hem-o-lok applier in the experts, and Hem-o-lok-related metrics markedly contributed to the 1st principal component on PCA analysis, followed by scissors-related metrics. Higher-level skills including a shorter path length and faster velocity were observed in both hands of the experts also in tasks 2 and 3. Sub-analysis showed that, in experts with 100 ≤  cases, scissors moved more frequently in the “close zone (0  ≤ to < 2.0 cm from aorta)” than those with 50–99 cases. CONCLUSION: Our novel Mocap system recognized significant differences in several metrics in multiple instruments according to the level of surgical experience. “Applying a Hem-o-lok clip on a pedicle” strongly reflected the level of surgical experience, and zone-metrics may be a promising tool to assess surgical expertise. Our next challenge is to give completely objective feedback to trainees on-site in the wet-lab. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00464-020-07940-7) contains supplementary material, which is available to authorized users.