Cargando…

GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles

Single cell RNA sequencing (scRNA-seq) is a powerful tool in detailing the cellular landscape within complex tissues. Large-scale single cell transcriptomics provide both opportunities and challenges for identifying rare cells playing crucial roles in development and disease. Here, we develop GapClu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fa, Botao, Wei, Ting, Zhou, Yuan, Johnston, Luke, Yuan, Xin, Ma, Yanran, Zhang, Yue, Yu, Zhangsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263561/
https://www.ncbi.nlm.nih.gov/pubmed/34234139
http://dx.doi.org/10.1038/s41467-021-24489-8
Descripción
Sumario:Single cell RNA sequencing (scRNA-seq) is a powerful tool in detailing the cellular landscape within complex tissues. Large-scale single cell transcriptomics provide both opportunities and challenges for identifying rare cells playing crucial roles in development and disease. Here, we develop GapClust, a light-weight algorithm to detect rare cell types from ultra-large scRNA-seq datasets with state-of-the-art speed and memory efficiency. Benchmarking on diverse experimental datasets demonstrates the superior performance of GapClust compared to other recently proposed methods. When applying our algorithm to an intestine and 68 k PBMC datasets, GapClust identifies the tuft cells and a previously unrecognised subtype of monocyte, respectively.